Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nat Commun ; 15(1): 5128, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879628

RESUMEN

Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.

2.
Materials (Basel) ; 17(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673167

RESUMEN

The solid electrolyte Li10GeP2S12 (LGPS) plays a crucial role in the development of all-solid-state batteries and has been widely studied both experimentally and theoretically. The properties of solid electrolytes, such as thermodynamic stability, conductivity, band gap, and more, are closely related to their ground-state structures. However, the presence of site-disordered co-occupancy of Ge/P and defective fractional occupancy of lithium ions results in an exceptionally large number of possible atomic configurations (structures). Currently, the electrostatic energy criterion is widely used to screen favorable candidates and reduce computational costs in first-principles calculations. In this study, we employ the machine learning- and active-learning-based LAsou method, in combination with first-principles calculations, to efficiently predict the most stable configuration of LGPS as reported in the literature. Then, we investigate the diffusion properties of Li ions within the temperature range of 500-900 K using ab initio molecular dynamics. The results demonstrate that the atomic configurations with different skeletons and Li ion distributions significantly affect the Li ions' diffusion. Moreover, the results also suggest that the LAsou method is valuable for refining experimental crystal structures, accelerating theoretical calculations, and facilitating the design of new solid electrolyte materials in the future.

3.
Nature ; 629(8012): 597-602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658762

RESUMEN

Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.

4.
J Phys Chem Lett ; 15(16): 4384-4390, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659407

RESUMEN

Rational design of catalysts relies on a deep understanding of the active centers. The structure and activity distribution of active centers on a surface are two of the central issues in catalysis and important targets of theoretical and experimental investigations. Herein, we report a machine learning-driven adequate sampling (MLAS) framework for obtaining a statistical understanding of the chemical environment near catalyst sites. Combined strategies were implemented to achieve highly efficient sampling, including the decomposition of degrees of freedom, stratified sampling, Gaussian process regression, and well-designed constraint optimization. The MLAS framework was applied to the rate-determining step in NH3 synthesis, namely the N2 activation process. We calculated the produced population function, PA, which provides a comprehensive and intuitive understanding of active centers. The MLAS framework can be broadly applied to other more complicated catalyst materials and reaction networks.

5.
Org Biomol Chem ; 22(13): 2630-2642, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38456330

RESUMEN

Non-noble metal-based catalyst systems consisting of inexpensive manganese salts, picolinic acid and various heterocycles enable epoxidation of the challenging (terminal) unactivated olefins, selective C-H oxidation of unactivated alkanes, and O-H oxidation of secondary alcohols with aqueous hydrogen peroxide. In the presence of the in situ generated optimal manganese catalyst, epoxides are generated with up to 81% yield from alkenes and ketone products with up to 51% yield from unactivated alkanes. This convenient protocol allows the formation of the desired products under ambient conditions (room temperature, 1 bar) by employing only a slight excess of hydrogen peroxide with 2,3-butadione as a sub-stoichiometric additive.

6.
Dalton Trans ; 53(9): 4048-4053, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38334718

RESUMEN

The dimethyl maleate hydrogenation activity of Cu, ZnO-X and physically mixed Cu+ZnO-X samples was systematically investigated to probe the essential role of ZnO in ester hydrogenation processes. Cu samples exhibited high CC bond hydrogenation ability with dimethyl succinate as the main product. Comparatively, ZnO was inactive in hydrogenation due to its weak ability to dissociate hydrogen while the CO group could be activated and adsorbed on the ZnO surface. Interestingly, physical mixing with ZnO significantly improved the CO hydrogenation activity of Cu samples. The H2-TPD results reveal the origin of "Cu-ZnO synergy": hydrogen atoms formed on the copper surface can spill over to the ZnO surface and react with the adsorbed CO group.

7.
Innovation (Camb) ; 5(2): 100571, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38379790

RESUMEN

Solid surfaces usually reach thermodynamic equilibrium through particle exchange with their environment under reactive conditions. A prerequisite for understanding their functionalities is detailed knowledge of the surface composition and atomistic geometry under working conditions. Owing to the large number of possible Miller indices and terminations involved in multielement solids, extensive sampling of the compositional and conformational space needed for reliable surface energy estimation is beyond the scope of ab initio calculations. Here, we demonstrate, using the case of iron carbides in environments with varied carbon chemical potentials, that the stable surface composition and geometry of multielement solids under reactive conditions, which involve large compositional and conformational spaces, can be predicted at ab initio accuracy using an approach that combines the bond valence model, Gaussian process regression, and ab initio thermodynamics. Determining the atomistic structure of surfaces under working conditions paves the way toward identifying the true active sites of multielement catalysts in heterogeneous catalysis.

8.
Langmuir ; 39(48): 17122-17132, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37983533

RESUMEN

Zeolite is considered an ideal catalyst for olefin hydration due to its high specific surface area and abundant acid sites. However, the immiscibility of the water-oil two phases in olefin hydration limits mass transfer, and the side reaction of etherification occurs acutely, resulting in a low yield of alcohol. Thus, water-oil amphiphilic HZSM-5 was prepared by sulfonating silanized zeolite. The successful introduction of organic and sulfonic acid groups is demonstrated by FT-IR, TG, and water contact angles. Amphiphilic HZSM-5 can stabilize the Pickering emulsion and catalyze cyclopentene hydration at the phase interface. In addition, NH3-TPD and Py-IR show that the amount of strong BroÌ·nsted acid sites of zeolites increases significantly after sulfonation. This facilitates the rate-determining step of cyclopentene activation by H+ to form carbocation. Moreover, the nucleophilic side reactions are inhibited by a high concentration of H+. Finally, under the optimized reaction condition, the conversion of cyclopentene can achieve 5.066% with a selectivity of 85.37% to cyclopentanol, which almost reaches the reaction equilibrium.

9.
Angew Chem Int Ed Engl ; 62(51): e202313313, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37930876

RESUMEN

Heterogeneous catalytic ammoxidation provides an eco-friendly route for the cyanide-free synthesis of nitrile compounds, which are important precursors for synthetic chemistry and pharmaceutical applications. However, in general such a process requires high pressures of molecular oxygen at elevated temperatures to accelerate the oxygen reduction and imine dehydrogenation steps, which is highly risky in practical applications. Here, we report an electric field enhanced ammoxidation system using a supported Fe clusters catalyst (Fe/NC), which enables efficient synthesis of nitriles from the corresponding aldehydes under ambient air pressure at room temperature (RT). A synergistic effect between the external electric field and the Fe/NC catalyst promotes the ammonia activation and the dehydrogenation of the generated imine intermediates and avoids the unwanted backwards reaction to aldehydes. This electric field enhanced ammoxidation system presents high efficiency and selectivity for the conversion of a series of aldehydes under mild conditions with high durability, rendering it an attractive process for the green synthesis of nitriles with fragile functional groups.

10.
Angew Chem Int Ed Engl ; 62(23): e202302994, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37013857

RESUMEN

Environmental-friendly halogenation of C-H bonds using abundant, non-toxic halogen salts is in high demand in various chemical industries, yet the efficiency and selectivity of laboratory available protocols are far behind the conventional photolytic halogenation process which uses hazardous halogen sources. Here we report an FeX2 (X=Br, Cl) coupled semiconductor system for efficient, selective, and continuous photocatalytic halogenation using NaX as halogen source under mild conditions. Herein, FeX2 catalyzes the reduction of molecular oxygen and the consumption of generated oxygen radicals, thus boosting the generation of halogen radicals and elemental halogen for direct halogenation and indirect halogenation via the formation of FeX3 . Recycling of FeX2 and FeX3 during the photocatalytic process enables the halogenation of a wide range of hydrocarbons in a continuous flow, rendering it a promising method for applications.

11.
ACS Omega ; 8(8): 7331-7343, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36873028

RESUMEN

Municipal organic solid waste contains many recoverable resources, including biomass materials and plastics. The high oxygen content and strong acidity of bio-oil limit its application in the energy field, and the oil quality is mainly improved by copyrolysis of biomass with plastics. Therefore, in this paper, a copyrolysis method was utilized to treat solid waste, namely, common waste cartons and waste plastic bottles (polypropylene (PP) and polyethylene (PE)) as raw materials. The products were analyzed by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, GC, and GC/MS to investigate the reaction pattern of the copyrolysis. The results show that the addition of plastics can reduce the residue content by about 3%, and the copyrolysis at 450 °C can increase the liquid yield by 3.78%. Compared with single waste carton pyrolysis, no new product appeared in the copyrolysis liquid products but the oxygen content of the liquid decreased from 65% to less than 8%. The content of CO2 and CO in the copyrolysis gas product is 5-15% higher than the theoretical value; the O content of the solid products increased by about 5%. This indicates that waste plastics can promote the formation of l-glucose and small molecules aldehydes and ketones by providing H radicals and reduce the oxygen content in liquids. Thus, copyrolysis improves the reaction depth and product quality of waste cartons, which provides a certain theoretical reference for the industrial application of solid waste copyrolysis.

12.
Angew Chem Int Ed Engl ; 62(22): e202302979, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36988035

RESUMEN

Heterogeneous photocatalysis is effective for the selective synthesis of value-added chemicals at lab-scale, yet falls short of requirements for mass production (low cost and user friendliness). Here we report the design and fabrication of a modular tubular flow system embedded with replaceable photocatalyst membranes for scalable photocatalytic C-C, C-N homocoupling and hydrogenation reactions, which can be operated in either circular and continuous flow mode with high performance. The photocatalyst membranes almost fully occupy the volume of the reactor, thus enabling optimal absorption of the incident light. Additionally, the porous structured photocatalyst membranes facilitate the mass transfer of the reactants to efficiently use the active sites, resulting in 0th -order reaction kinetics and a high space-time yield compared to the batch reaction system at practical application levels and prolonged reaction times.

13.
J Am Chem Soc ; 145(9): 5353-5362, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36853085

RESUMEN

Photocatalysis provides an eco-friendly route for the hydrogenation of aromatic carbonyls to O-free aromatics, which is an important refining process in the chemical industry that is generally carried out under high pressure of hydrogen at elevated temperatures. However, aromatic carbonyls are often only partially hydrogenated to alcohols, which readily desorbs and are hardly further deoxygenated under ambient conditions. Here, we show that by constructing an oxide surface over the Pd cocatalyst supported on graphitic carbon nitride, an alternative hydrogenation path of aromatic carbonyls becomes available via a step-wise acetalization and hydrogenation, thus allowing efficient and selective production of O-free aromatics. The PdO surface allows for optimum adsorption of reactants and intermediates and rapid abstraction of hydrogen from the alcohol donor, favoring fast acetalization of the carbonyls and their consecutive hydrogenation to O-free hydrocarbons. The photocatalytic hydrogenation of benzaldehyde into toluene shows a high selectivity of >90% and a quantum efficiency of ∼10.2% under 410 nm irradiation. By adding trace amounts of HCl to the reaction solution, the PdO surface remains stable and active for long-term operation at high concentrations, offering perspective for practical applications.

14.
Sleep ; 46(11)2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36827092

RESUMEN

STUDY OBJECTIVES: This study verified that sleep deprivation before and after skin/muscle incision and retraction (SMIR) surgery increased the risk of chronic pain and investigated the underlying roles of microglial voltage-dependent anion channel 1 (VDAC1) signaling. METHODS: Adult mice received 6 hours of total sleep deprivation from 1 day prior to SMIR until the third day after surgery. Mechanical and heat-evoked pain was assessed before and within 21 days after surgery. Microglial activation and changes in VDAC1 expression and oligomerization were measured. Minocycline was injected to observe the effects of inhibiting microglial activation on pain maintenance. The VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and oligomerization inhibitor VBIT-4 were used to determine the roles of VDAC1 signaling on microglial adenosine 5' triphosphate (ATP) release, inflammation (IL-1ß and CCL2), and chronicity of pain. RESULTS: Sleep deprivation significantly increased the pain duration after SMIR surgery, activated microglia, and enhanced VDAC1 signaling in the spinal cord. Minocycline inhibited microglial activation and alleviated sleep deprivation-induced pain maintenance. Lipopolysaccharide (LPS)-induced microglial activation was accompanied by increased VDAC1 expression and oligomerization, and more VDAC1 was observed on the cell membrane surface compared with control. DIDS and VBIT-4 rescued LPS-induced microglial ATP release and IL-1ß and CCL2 expression. DIDS and VBIT-4 reversed sleep loss-induced microglial activation and pain chronicity in mice, similar to the effects of minocycline. No synergistic effects were found for minocycline plus VBIT-4 or DIDS. CONCLUSIONS: Perioperative sleep deprivation activated spinal microglia and increases the risk of chronic postsurgical pain in mice. VDAC1 signaling regulates microglial activation-related ATP release, inflammation, and chronicity of pain.


Asunto(s)
Microglía , Privación de Sueño , Ratones , Animales , Microglía/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Minociclina/farmacología , Minociclina/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/metabolismo , Lipopolisacáridos/metabolismo , Dolor Postoperatorio , Inflamación/metabolismo , Adenosina Trifosfato
15.
ACS Catal ; 13(1): 248-255, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36644650

RESUMEN

The α-haloketones are important precursors for synthetic chemistry and pharmaceutical applications; however, their production relies heavily on traditional synthetic methods via halogenation of ketones that are toxic and environmentally risky. Here, we report a heterogeneous photosynthetic strategy of α-haloketone production from aromatic olefins using copper-modified graphitic carbon nitride (Cu-C3N4) under mild reaction conditions. By employing NiX2 (X = Cl, Br) as the halogen source, a series of α-haloketones can be synthesized using atmospheric air as the oxidant under visible-light irradiation. In comparison with pristine carbon nitride, the addition of Cu as a cocatalyst provides a moderate generation rate of halogen radicals and selective reduction of molecular oxygen into •OOH radicals, thus leading to a high selectivity to α-haloketones. The Cu-C3N4 also exhibits high stability and versatility, rendering it a promising candidate for solar-driven synthetic applications.

16.
Phys Chem Chem Phys ; 25(5): 4313-4322, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688704

RESUMEN

The carbonization of iron is a very important early phenomenon in the field of heterogeneous catalysis and the petrochemical industry, but the mechanism is still controversial. In this work, the carbonization mechanism and carbonization structure of iron nanoparticles by different carbon sources (CH4, C2H6, C2H4, C2H2) were systematically investigated using the reactive molecular dynamics method. The results show that saturated alkanes are dehydrogenated while adsorbed, but unsaturated olefins and alkynes undergo bond-breaking while adsorbed. The C-H bond is more likely to break than the C-C bond. Hydrocarbons with high carbon content have a strong ability to carbonize Fe nanoparticles under the same conditions. For C2H4 and C2H2, the C atoms generated from dissociation form a large number of long carbon chains intertwined with branched chains and multiple carbon rings. The C2 species formed by C2H2 after complete dehydrogenation diffuse rapidly to the interior of the nanoparticles, releasing the surface active sites and accelerating the carbonization process. Carbon-rich iron carbides (FeCx) with different Fe/C ratios were obtained by carbonization with different carbon sources. In addition, the Fe(110) surface exhibits the strongest carburizing ability. These findings provide systematic insights into the initial stages of metal Fe carburization.

17.
RSC Adv ; 12(31): 19869-19874, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35865192

RESUMEN

High-entropy alloys (HEAs) with multiple elements in near-equiatomic proportions hold great promise in heterogeneous catalysis because of their exceptional physicochemical properties governed by synergy. Herein, we prepared PtPdCoCuNi HEA nanoparticles via a one-step colloid-based route and tested their catalytic performance for nitrobenzene hydrogenation to aniline. The SiO2 supported PtPdCoCuNi displays 93.9% yield of aniline at 80 °C, which is 2.11 times that of PtPd/SiO2. Even at room temperature, a 47.4% yield of aniline is attained with the PtPdCoCuNi/SiO2 catalyst. DRIFTS experiments indicate formation of isolated Pt and Pd sites after alloying the transition metals and evidence a stronger interaction between the HEA catalyst and nitrobenzene. Both XPS data and DFT calculations disclose charge transfer to Pt and Pd species, which eventually enhance the interaction between nitrobenzene and the isolated metal sites and the hydrogenation activity as well. The experimental and theoretical results shed light on mechanistic understanding of the unique catalytic performance of the HEA nanocatalyst and pave a new avenue to realize the high catalytic performance of nitrobenzene hydrogenation over well-isolated noble metal sites with specific geometries.

18.
Chem Commun (Camb) ; 58(40): 6024-6027, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35502741

RESUMEN

Durable Cu/NiFe(OH)x electrocatalyst was designed for hydrogen evolution reaction in alkaline media. The in situ generated Cu nanodendrites protect the NiFe(OH)x from being hydrogenated, giving it a > 1000 h lifetime for high-performance water splitting (1.51 V, 10 mA cm-2 in 1 M KOH) when coupled with a NiFe-layered double hydroxide anode.

19.
Science ; 375(6585): 1188-1191, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271314

RESUMEN

Polyethylene production through catalytic ethylene polymerization is one of the most common processes in the chemical industry. The popular Cossee-Arlman mechanism hypothesizes that the ethylene be directly inserted into the metal-carbon bond during chain growth, which has been awaiting microscopic and spatiotemporal experimental confirmation. Here, we report an in situ visualization of ethylene polymerization by scanning tunneling microscopy on a carburized iron single-crystal surface. We observed that ethylene polymerization proceeds on a specific triangular iron site at the boundary between two carbide domains. Without an activator, an intermediate, attributed to surface-anchored ethylidene (CHCH3), serves as the chain initiator (self-initiation), which subsequently grows by ethylene insertion. Our finding provides direct experimental evidence of the ethylene polymerization pathway at the molecular level.

20.
Angew Chem Int Ed Engl ; 61(24): e202204256, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35334135

RESUMEN

Employing pure water, the ultimate green source of hydrogen donor to initiate chemical reactions that involve a hydrogen atom transfer (HAT) step is fascinating but challenging due to its large H-O bond dissociation energy (BDEH-O =5.1 eV). Many approaches have been explored to stimulate water for hydrogenative reactions, but the efficiency and productivity still require significant enhancement. Here, we show that the surface hydroxylated graphitic carbon nitride (gCN-OH) only requires 2.25 eV to activate H-O bonds in water, enabling abstraction of hydrogen atoms via dehydrogenation of pure water into hydrogen peroxide under visible light irradiation. The gCN-OH presents a stable catalytic performance for hydrogenative N-N coupling, pinacol-type coupling and dehalogenative C-C coupling, all with high yield and efficiency, even under solar radiation, featuring extensive impacts in using renewable energy for a cleaner process in dye, electronic, and pharmaceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...