Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 212
1.
Mikrochim Acta ; 191(6): 317, 2024 May 10.
Article En | MEDLINE | ID: mdl-38724862

A simple, sensitive dual-emission probe was developed for the detection of phosphate (Pi). The probe Tb-BTB/DPA was synthesized by mixing dual-ligand, 1,3,5-tri(4-carboxyphenyl) benzene (H3BTB) and dipicolinic acid (DPA), with metal ions Tb3+ in ethanol-water solution at 40℃ for 2 h. Tb-BTB/DPA exhibits two emission peaks, the emission at 362 nm is attributed to H3BTB, an energy transfer between Tb3+ nodes, and DPA further enhances the fluorescence of Tb3+ at 544 nm. Pi competes with ligand H3BTB to coordinate Tb3+, resulting in partial collapse of the Tb-BTB/DPA structure and interrupting the electron transfer between H3BTB and Tb3+. Therefore, the emission at 362 nm is enhanced, while the emission at 544 nm is unchanged, and a ratiometric fluorescence method is developed to detect Pi. Tb-BTB/DPA exhibits good linearity within the Pi concentration range (0.1-50 µmol/L), and the detection limit was 25.8 nmol/L. This study provides a new way to prepare probes with dual emission sensing properties.

2.
Adv Healthc Mater ; : e2400562, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773929

The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis and treatment, etc. It is noteworthy that soft and elastic conductive hydrogels (CHs), owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. In this review, we summarize the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discuss the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus towards bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications. This article is protected by copyright. All rights reserved.

3.
Biosens Bioelectron ; 255: 116263, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38593715

Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.


Biosensing Techniques , Luminol , Zinc , Piwi-Interacting RNA , Luminescent Measurements/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Metals
4.
Ann Hematol ; 103(5): 1541-1547, 2024 May.
Article En | MEDLINE | ID: mdl-38467825

Visceral leishmaniasis-associated hemophagocytic lymphohistiocytosis (VL-HLH) is indistinguishable from those of HLH of other etiologies due to the overlap symptoms, posing a serious threat to life. In this study, we aimed to provide insights for early diagnosis and improve outcomes in pediatric patients with VL-HLH. We retrospectively analyzed the clinical and laboratory data of 10 pediatric patients with VL-HLH and 58 pediatric patients with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH). The median time from symptom onset to cytopenia in patients with VL-HLH and EBV-HLH was 11 days (interquartile range, 7-15 days) and five days (interquartile range, 3.75-9.25 days) (P = 0.005). Both groups showed liver injury and increased lactate dehydrogenase levels; however the levels of aspartate aminotransferase, alanine aminotransferase, direct bilirubin, and lactate dehydrogenase in patients with VL-HLH were significantly lower than those in patients with EBV-HLH (P < 0.05). The fibrinogen and triglyceride levels were almost normal in VL-HLH patients but were significantly altered in EBV-HLH cases ( P < 0.05). The positive rate of first bone marrow microscopy examination, anti-rK39 IgG detection, and blood metagenomic next-generation sequencing was 50%, 100%, and 100%, respectively. After VL diagnosis, eight patients were treated with sodium stibogluconate and two were treated with liposomal amphotericin B. All the patients with VL-HLH recovered. Our study demonstrates that regular triglyceride and fibrinogen levels in pediatric patients with VL-HLH may help in differential diagnosis from EBV-HLH. VL-HLH is milder than EBV-HLH, with less severe liver injury and inflammatory responses, and timely treatment with antileishmanial agents is essential to improve the outcomes of pediatric patients with VL-HLH.


Epstein-Barr Virus Infections , Leishmaniasis, Visceral , Lymphohistiocytosis, Hemophagocytic , Child , Humans , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/diagnosis , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Herpesvirus 4, Human , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy , Retrospective Studies , Fibrinogen , Triglycerides/therapeutic use , Lactate Dehydrogenases
5.
ACS Omega ; 9(6): 6219-6234, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38371811

mRNA, as one of the foci of biomedical research in the past decade, has become a candidate vaccine solution for various infectious diseases and tumors and for regenerative medicine and immunotherapy due to its high efficiency, safety, and effectiveness. A stable and effective delivery system is needed to protect mRNAs from nuclease degradation while also enhancing immunogenicity. The success of mRNA lipid nanoparticles in treating COVID-19, to a certain extent, marks a milestone for mRNA vaccines and also promotes further research on mRNA delivery systems. Here, we explore mRNA vaccine delivery systems, especially lipid nanoparticles (LNPs), considering the current research status, prospects, and challenges of lipid nanoparticles, and explore other mRNA delivery systems.

6.
Nat Med ; 30(2): 552-559, 2024 Feb.
Article En | MEDLINE | ID: mdl-38167937

Perioperative chemotherapy is the standard treatment for locally advanced gastric or gastro-esophageal junction cancer, and the addition of programmed cell death 1 (PD-1) inhibitor is under investigation. In this randomized, open-label, phase 2 study (NEOSUMMIT-01), patients with resectable gastric or gastro-esophageal junction cancer clinically staged as cT3-4aN + M0 were randomized (1:1) to receive either three preoperative and five postoperative 3-week cycles of SOX/XELOX (chemotherapy group, n = 54) or PD-1 inhibitor toripalimab plus SOX/XELOX, followed by toripalimab monotherapy for up to 6 months (toripalimab plus chemotherapy group, n = 54). The primary endpoint was pathological complete response or near-complete response rate (tumor regression grade (TRG) 0/1). The results showed that patients in the toripalimab plus chemotherapy group achieved a higher proportion of TRG 0/1 than those in the chemotherapy group (44.4% (24 of 54, 95% confidence interval (CI): 30.9%-58.6%) versus 20.4% (11 of 54, 95% CI: 10.6%-33.5%)), and the risk difference of TRG 0/1 between toripalimab plus chemotherapy group and chemotherapy group was 22.7% (95% CI: 5.8%-39.6%; P = 0.009), meeting a prespecified endpoint. In addition, a higher pathological complete response rate (ypT0N0) was observed in the toripalimab plus chemotherapy group (22.2% (12 of 54, 95% CI: 12.0%-35.6%) versus 7.4% (4 of 54, 95% CI: 2.1%-17.9%); P = 0.030), and surgical morbidity (11.8% in the toripalimab plus chemotherapy group versus 13.5% in the chemotherapy group) and mortality (1.9% versus 0%), and treatment-related grade 3-4 adverse events (35.2% versus 29.6%) were comparable between the treatment groups. In conclusion, the addition of toripalimab to chemotherapy significantly increased the proportion of patients achieving TRG 0/1 compared to chemotherapy alone and showed a manageable safety profile. ClinicalTrials.gov registration: NCT04250948 .


Adenocarcinoma , Esophageal Neoplasms , Stomach Neoplasms , Humans , Adenocarcinoma/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Antibodies, Monoclonal, Humanized/adverse effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/surgery , Esophageal Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects
8.
Drug Resist Updat ; 73: 101042, 2024 Mar.
Article En | MEDLINE | ID: mdl-38219532

Drug resistance in cancer remains a major challenge in oncology, impeding the effectiveness of various treatment modalities. The nuclear factor-kappa B (NF-κB) signaling pathway has emerged as a critical player in the development of drug resistance in cancer cells. This comprehensive review explores the intricate relationship between NF-κB and drug resistance in cancer. We delve into the molecular mechanisms through which NF-κB activation contributes to resistance against chemotherapeutic agents, targeted therapies, and immunotherapies. Additionally, we discuss potential strategies to overcome this resistance by targeting NF-κB signaling, such as small molecule inhibitors and combination therapies. Understanding the multifaceted interactions between NF-κB and drug resistance is crucial for the development of more effective cancer treatment strategies. By dissecting the complex signaling network of NF-κB, we hope to shed light on novel therapeutic approaches that can enhance treatment outcomes, ultimately improving the prognosis for cancer patients. This review aims to provide a comprehensive overview of the current state of knowledge on NF-κB and its role in drug resistance, offering insights that may guide future research and therapeutic interventions in the fight against cancer.


NF-kappa B , Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Drug Resistance , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
9.
Mov Disord ; 39(1): 94-104, 2024 Jan.
Article En | MEDLINE | ID: mdl-38013597

BACKGROUND: The change of microvascular function over the course of Parkinson's disease (PD) remains unclear. OBJECTIVE: We aimed to ascertain regional cerebrovascular reactivity (CVR) changes in the patients with PD at baseline (V0) and during a 2-year follow-up period (V1). We further investigated whether alterations in CVR were linked to cognitive decline and brain functional connectivity (FC). METHODS: We recruited 90 PD patients and 51 matched healthy controls (HCs). PD patients underwent clinical evaluations, neuropsychological assessments, and magnetic resonance (MR) scanning at V0 and V1, whereas HCs completed neuropsychological assessments and MR at baseline. The analysis included evaluating CVR and FC maps derived from resting-state functional magnetic resonance imaging and investigating CVR measurement reproducibility. RESULTS: Compared with HCs, CVR reduction in left inferior occipital gyrus and right superior temporal cortex at V0 persisted at V1, with larger clusters. Longitudinal reduction in CVR of the left posterior cingulate cortex correlated with decline in Trail Making Test B performance within PD patients. Reproducibility validation further confirmed these findings. In addition, the results also showed that there was a tendency for FC to be weakened from posterior to anterior with the progression of the disease. CONCLUSIONS: Microvascular dysfunction might be involved in disease progression, subsequently weaken brain FC, and partly contribute to executive function deficits in early PD. © 2023 International Parkinson and Movement Disorder Society.


Cognitive Dysfunction , Parkinson Disease , Humans , Longitudinal Studies , Reproducibility of Results , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Magnetic Resonance Imaging/methods
10.
Biosens Bioelectron ; 246: 115863, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38008056

Metal organic gels (MOGs) are a new kind of intelligent soft materials with excellent luminescence properties. However, MOGs with dual electrochemiluminescence (ECL) properties have not been reported. In this study, using Eu3+ as metal node, 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy) and Luminol as organic ligands, a novel dual-ligand Europium-organic gels (Eu-L-H MOGs) were prepared by simple mixing at room temperature. On the one hand, Eu-L-H MOGs could exhibit strong and stable anodic ECL signals in the phosphate buffered saline (PBS) without the addition of co-reactants, which came from the blue emission of Luminol. On the other hand, using K2S2O8 as a cathodic co-reactant, Eu-L-H MOGs produced cathodic signals, which were derived from the red emission of Eu sensitized by Hcptpy through the antenna effect. Based on the independent dual ECL signals of Eu-L-H MOGs, we selected Alexa Flour 430 as the receptor and anodic ECL emission of Eu-L-H MOGs as the donor to construct the ECL resonance energy transfer (ECL-RET) ratio biosensor, which utilized exonuclease III assisted DNA cycle amplification to achieve ultrasensitive detection of the I27L gene. The detection linearity of I27L ranged from 1 fM to 10 nM, with a detection limit as low as 284 aM. This study developed a straightforward technique for obtaining a single luminescent material with dual signals, and further broadened the analytical application of MOGs in the realm of ECL.


Biosensing Techniques , Europium , Luminol , Ligands , Luminescent Measurements/methods , Biosensing Techniques/methods , Gels , Electrochemical Techniques/methods , Limit of Detection
11.
Drug Resist Updat ; 72: 101018, 2024 Jan.
Article En | MEDLINE | ID: mdl-37979442

Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.


Copper , Neoplasms , Humans , Drug Resistance, Neoplasm/genetics , Cell Death , Ionophores , Neoplasms/drug therapy , Neoplasms/genetics , Apoptosis
12.
Anal Chem ; 96(1): 538-546, 2024 01 09.
Article En | MEDLINE | ID: mdl-38102084

This study developed a new zirconium metal-organic framework (MOF) luminophore named Zr-DPA@TCPP with dual-emission electrochemiluminescence (ECL) characteristics at a resolved potential. First, Zr-DPA@TCPP with a core-shell structure was effectively synthesized through the self-assembly of 9,10-di(p-carboxyphenyl)anthracene (DPA) and 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) as the respective organic ligands and the Zr cluster as the metal node. The reasonable integration of the two organic ligands DPA and TCPP with ECL properties into a single monomer, Zr-DPA@TCPP, successfully exhibited synchronous anodic and cathodic ECL signals. Besides, due to the impressively unique property of ferrocene (Fc), which can quench the anodic ECL but cannot affect the cathodic ECL signal, the ratiometric ECL biosensor was cleverly designed by using the cathode signal as an internal reference. Thus, combined with DNA recycle amplification reactions, the ECL biosensor realized sensitive ratiometric detection of HPV-16 DNA with the linear range of 1 fM-100 pM and the limit of detection (LOD) of 596 aM. The distinctive dual-emission properties of Zr-DPA@TCPP provided a new idea for the development of ECL luminophores and opened up an innovative avenue of fabricating the ratiometric ECL platform.


Biosensing Techniques , Metal-Organic Frameworks , Zirconium/chemistry , Metal-Organic Frameworks/chemistry , Human papillomavirus 16 , Luminescent Measurements , DNA/chemistry , Limit of Detection , Electrochemical Techniques
13.
Cancer Commun (Lond) ; 44(1): 127-172, 2024 01.
Article En | MEDLINE | ID: mdl-38160327

The 2023 update of the Chinese Society of Clinical Oncology (CSCO) Clinical Guidelines for Gastric Cancer focuses on standardizing cancer diagnosis and treatment in China, reflecting the latest advancements in evidence-based medicine, healthcare resource availability, and precision medicine. These updates address the differences in epidemiological characteristics, clinicopathological features, tumor biology, treatment patterns, and drug selections between Eastern and Western gastric cancer patients. Key revisions include a structured template for imaging diagnosis reports, updated standards for molecular marker testing in pathological diagnosis, and an elevated recommendation for neoadjuvant chemotherapy in stage III gastric cancer. For advanced metastatic gastric cancer, the guidelines introduce new recommendations for immunotherapy, anti-angiogenic therapy and targeted drugs, along with updated management strategies for human epidermal growth factor receptor 2 (HER2)-positive and deficient DNA mismatch repair (dMMR)/microsatellite instability-high (MSI-H) patients. Additionally, the guidelines offer detailed screening recommendations for hereditary gastric cancer and an appendix listing drug treatment regimens for various stages of gastric cancer. The 2023 CSCO Clinical Guidelines for Gastric Cancer updates are based on both Chinese and international clinical research and expert consensus to enhance their applicability and relevance in clinical practice, particularly in the heterogeneous healthcare landscape of China, while maintaining a commitment to scientific rigor, impartiality, and timely revisions.


Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Medical Oncology , Immunotherapy , Neoadjuvant Therapy , China
14.
IEEE Trans Image Process ; 32: 6274-6288, 2023.
Article En | MEDLINE | ID: mdl-37948145

Scene graph generation (SGG) and human-object interaction (HOI) detection are two important visual tasks aiming at localising and recognising relationships between objects, and interactions between humans and objects, respectively. Prevailing works treat these tasks as distinct tasks, leading to the development of task-specific models tailored to individual datasets. However, we posit that the presence of visual relationships can furnish crucial contextual and intricate relational cues that significantly augment the inference of human-object interactions. This motivates us to think if there is a natural intrinsic relationship between the two tasks, where scene graphs can serve as a source for inferring human-object interactions. In light of this, we introduce SG2HOI+, a unified one-step model based on the Transformer architecture. Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection. Concretely, we initiate a relation Transformer tasked with generating relation triples from a suite of visual features. Subsequently, we employ another transformer-based decoder to predict human-object interactions based on the generated relation triples. A comprehensive series of experiments conducted across established benchmark datasets including Visual Genome, V-COCO, and HICO-DET demonstrates the compelling performance of our SG2HOI+ model in comparison to prevalent one-stage SGG models. Remarkably, our approach achieves competitive performance when compared to state-of-the-art HOI methods. Additionally, we observe that our SG2HOI+ jointly trained on both SGG and HOI tasks in an end-to-end manner yields substantial improvements for both tasks compared to individualized training paradigms.


Recognition, Psychology , Visual Perception , Humans
15.
Cancer Commun (Lond) ; 43(12): 1312-1325, 2023 12.
Article En | MEDLINE | ID: mdl-37837629

BACKGROUND: Circulating tumor DNA (ctDNA) is a promising biomarker for predicting relapse in multiple solid cancers. However, the predictive value of ctDNA for disease recurrence remains indefinite in locoregional gastric cancer (GC). Here, we aimed to evaluate the predictive value of ctDNA in this context. METHODS: From 2016 to 2019, 100 patients with stage II/III resectable GC were recruited in this prospective cohort study (NCT02887612). Primary tumors were collected during surgical resection, and plasma samples were collected perioperatively and within 3 months after adjuvant chemotherapy (ACT). Somatic variants were captured via a targeted sequencing panel of 425 cancer-related genes. The plasma was defined as ctDNA-positive only if one or more variants detected in the plasma were presented in at least 2% of the primary tumors. RESULTS: Compared with ctDNA-negative patients, patients with positive postoperative ctDNA had moderately higher risk of recurrence [hazard ratio (HR) = 2.74, 95% confidence interval (CI) = 1.37-5.48; P = 0.003], while patients with positive post-ACT ctDNA showed remarkably higher risk (HR = 14.99, 95% CI = 3.08-72.96; P < 0.001). Multivariate analyses indicated that both postoperative and post-ACT ctDNA positivity were independent predictors of recurrence-free survival (RFS). Moreover, post-ACT ctDNA achieved better predictive performance (sensitivity, 77.8%; specificity, 90.6%) than both postoperative ctDNA and serial cancer antigen. A comprehensive model incorporating ctDNA for recurrence risk prediction showed a higher C-index (0.78; 95% CI = 0.71-0.84) than the model without ctDNA (0.71; 95% CI = 0.64-0.79; P = 0.009). CONCLUSIONS: Residual ctDNA after ACT effectively predicts high recurrence risk in stage II/III GC, and the combination of tissue-based and circulating tumor features could achieve better risk prediction.


Circulating Tumor DNA , Stomach Neoplasms , Humans , Chemotherapy, Adjuvant , Circulating Tumor DNA/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prospective Studies , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/surgery , Cohort Studies
16.
Cell Rep Methods ; 3(10): 100598, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37776856

Spatially resolved omics technologies reveal context-dependent cellular regulatory networks in tissues of interest. Beyond transcriptome analysis, information on epigenetic traits and chromatin accessibility can provide further insights on gene regulation in health and disease. Nevertheless, compared to the enormous advancements in spatial transcriptomics technologies, the field of spatial epigenomics is much younger and still underexplored. In this study, we report laser capture microdissection coupled to ATAC-seq (LCM-ATAC-seq) applied to fresh frozen samples for the spatial characterization of chromatin accessibility. We first demonstrate the efficient use of LCM coupled to in situ tagmentation and evaluate its performance as a function of cell number, microdissected areas, and tissue type. Further, we demonstrate its use for the targeted chromatin accessibility analysis of discrete contiguous or scattered cell populations in tissues via single-nuclei capture based on immunostaining for specific cellular markers.


Chromatin Immunoprecipitation Sequencing , Chromatin , Chromatin/genetics , Laser Capture Microdissection , Gene Expression Profiling , Freezing
17.
BMC Genomics ; 24(1): 434, 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37537524

BACKGROUND: Fatty acids composition in poultry muscle is directly related to its tenderness, flavour, and juiciness, whereas its genetic mechanisms have not been elucidated. In this study, the genetic structure and key regulatory genes of the breast muscle fatty acid composition of local Chinese chicken, Gushi-Anka F2 resource population by integrating genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) strategies. GWAS was performed based on 323,306 single nucleotide polymorphisms (SNPs) obtained by genotyping by sequencing (GBS) method and 721 chickens from the Gushi-Anka F2 resource population with highly variable fatty acid composition traits in the breast muscle. And then, according to the transcriptome data of the candidate genes that were obtained and phenotypic data of fatty acid composition traits in breast muscle of Gushi chickens at 14, 22, and 30 weeks of age, we conducted a WGCNA. RESULTS: A total of 128 suggestive significantly associated SNPs for 11 fatty acid composition traits were identified and mapped on chromosomes (Chr) 2, 3, 4, 5, 13, 17, 21, and 27. Of these, the two most significant SNPs were Chr13:5,100,140 (P = 4.56423e-10) and Chr13:5,100,173 (P = 4.56423e-10), which explained 5.6% of the phenotypic variation in polyunsaturated fatty acids (PUFA). In addition, six fatty acid composition traits, including C20:1, C22:6, saturated fatty acid (SFA), unsaturated fatty acids (UFA), PUFA, and average chain length (ACL), were located in the same QTL intervals on Chr13. We obtained 505 genes by scanning the linkage disequilibrium (LD) regions of all significant SNPs and performed a WGCNA based on the transcriptome data of the above 505 genes. Combining two strategies, 9 hub genes (ENO1, ADH1, ASAH1, ADH1C, PIK3CD, WISP1, AKT1, PANK3, and C1QTNF2) were finally identified, which could be the potential candidate genes regulating fatty acid composition traits in chicken breast muscle. CONCLUSION: The results of this study deepen our understanding of the genetic mechanisms underlying the regulation of fatty acid composition traits, which is helpful in the design of breeding strategies for the subsequent improvement of fatty acid composition in poultry muscle.


Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Fatty Acids/chemistry , Polymorphism, Single Nucleotide , Muscles , Genes, Regulator
18.
Inorg Chem ; 62(32): 12697-12707, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37526919

Vacancy engineering as an effective strategy has been widely employed to regulate the enzyme-mimic activity of nanomaterials by adjusting the surface, electronic structure, and creating more active sites. Herein, we purposed a facile and simple method to acquire transition metal manganese oxide rich in oxygen vacancies (OVs-Mn2O3-400) by pyrolyzing the precursor of the Mn(II)-based metal-organic gel directly. The as-prepared OVs-Mn2O3-400 exhibited superior oxidase-like activity as oxygen vacancies participated in the generation of O2•-. Besides, steady state kinetic constant (Km) and catalytic kinetic constant (Ea) suggested that OVs-Mn2O3-400 had a stronger affinity toward 3,3',5,5'-tetramethylbenzidine and possessed prominent catalytic performance. By taking 2-phospho-l-ascorbic acid as the substrate, which can be converted into reducing substance ascorbic acid in the presence of alkaline phosphatase (ALP), OVs-Mn2O3-400 can be applied as an efficient nanozyme for ALP colorimetric analysis without the help of destructive H2O2. The colorimetric sensor established by OVs-Mn2O3-400 for ALP detection showed a good linearity from 0.1 to 12 U/L and a lower limit of detection of 0.054 U/L. Our work paves the way for designing enhanced enzyme-like activity nanozymes, which is of significance in biosensing.

19.
Nat Cardiovasc Res ; 2(3): 290-306, 2023 Mar.
Article En | MEDLINE | ID: mdl-37621765

Atherosclerotic plaques form in the inner layer of arteries triggering heart attacks and strokes. Although T cells have been detected in atherosclerosis, tolerance dysfunction as a disease driver remains unexplored. Here we examine tolerance checkpoints in atherosclerotic plaques, artery tertiary lymphoid organs and lymph nodes in mice burdened by advanced atherosclerosis, via single-cell RNA sequencing paired with T cell antigen receptor sequencing. Complex patterns of deteriorating peripheral T cell tolerance were observed being most pronounced in plaques followed by artery tertiary lymphoid organs, lymph nodes and blood. Affected checkpoints included clonal expansion of CD4+, CD8+ and regulatory T cells; aberrant tolerance-regulating transcripts of clonally expanded T cells; T cell exhaustion; Treg-TH17 T cell conversion; and dysfunctional antigen presentation. Moreover, single-cell RNA-sequencing profiles of human plaques revealed that the CD8+ T cell tolerance dysfunction observed in mouse plaques was shared in human coronary and carotid artery plaques. Thus, our data support the concept of atherosclerosis as a bona fide T cell autoimmune disease targeting the arterial wall.

20.
Anal Chem ; 95(28): 10721-10727, 2023 07 18.
Article En | MEDLINE | ID: mdl-37395546

DNA walkers, a sophisticated type of nanomachines, exhibit intelligent application in biosensing with high programmability and flexibility but usually need additional auxiliary driving force, particularly when walking on hard surfaces. Herein, we construct a three-dimensional (3D) DNA walker on the soft surface of DNA nanospheres (DSs) by using a single-stranded DNA (ssDNA), which is powered by endogenous adenosine triphosphate (ATP) of live cells, so as to sensitively image microRNA (miRNA) in the tumor microenvironment. When the DS walker enters into live cells, miR-21, a general overexpressed biomarker in cancer cells, binds with the blocking strand (B), releasing the walking strand (W) and triggering an ATP-propelled walking reaction. The walking of the DS walker then generates an increasing Cy3 fluorescence signal that indicates the content of miR-21 with about 2.73-fold increase in sensitivity and about 157-fold decrease in the detection limit. Notably, the assembly of the DS walker on soft nanoparticles needs just an easy hybridization process, which facilitates the operation. Meanwhile, this endogenous ATP-powered 3D DNA walker walking on the soft surface performs real-time in situ imaging of miR-21 in live cells, which not only avoids the complex cell treatment and signal error induced by additional auxiliary factors, but also shows high promise of designing programmable DNA nanomachines.


Biosensing Techniques , Metal Nanoparticles , MicroRNAs , MicroRNAs/genetics , DNA/genetics , Nucleic Acid Hybridization , Diagnostic Imaging , Biosensing Techniques/methods , Limit of Detection , Gold
...