Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Article En | MEDLINE | ID: mdl-38676848

Contrast enhanced pulmonary vein magnetic resonance angiography (PV CE-MRA) has value in atrial ablation pre-procedural planning. We aimed to provide high fidelity, ECG gated PV CE-MRA accelerated by variable density Cartesian sampling (VD-CASPR) with image navigator (iNAV) respiratory motion correction acquired in under 4 min. We describe its use in part during the global iodinated contrast shortage. VD-CASPR/iNAV framework was applied to ECG-gated inversion and saturation recovery gradient recalled echo PV CE-MRA in 65 patients (66 exams) using .15 mmol/kg Gadobutrol. Image quality was assessed by three physicians, and anatomical segmentation quality by two technologists. Left atrial SNR and left atrial/myocardial CNR were measured. 12 patients had CTA within 6 months of MRA. Two readers assessed PV ostial measurements versus CTA for intermodality/interobserver agreement. Inter-rater/intermodality reliability, reproducibility of ostial measurements, SNR/CNR, image, and anatomical segmentation quality was compared. The mean acquisition time was 3.58 ± 0.60 min. Of 35 PV pre-ablation datasets (34 patients), mean anatomical segmentation quality score was 3.66 ± 0.54 and 3.63 ± 0.55 as rated by technologists 1 and 2, respectively (p = 0.7113). Good/excellent anatomical segmentation quality (grade 3/4) was seen in 97% of exams. Each rated one exam as moderate quality (grade 2). 95% received a majority image quality score of good/excellent by three physicians. Ostial PV measurements correlated moderate to excellently with CTA (ICCs range 0.52-0.86). No difference in SNR was observed between IR and SR. High quality PV CE-MRA is possible in under 4 min using iNAV bolus timing/motion correction and VD-CASPR.

2.
BMC Cardiovasc Disord ; 23(1): 473, 2023 09 21.
Article En | MEDLINE | ID: mdl-37735355

PURPOSE: Highly accelerated compressed sensing cine has allowed for quantification of ventricular function in a single breath hold. However, compared to segmented breath hold techniques, there may be underestimation or overestimation of LV volumes. Furthermore, a heterogeneous sample of techniques have been used in volunteers and patients for pre-clinical and clinical use. This can complicate individual comparisons where small, but statistically significant differences exist in left ventricular morphological and/or functional parameters. This meta-analysis aims to provide a comparison of conventional cine versus compressed sensing based reconstruction techniques in patients and volunteers. METHODS: Two investigators performed systematic searches for eligible studies using PubMed/MEDLINE and Web of Science to identify studies published 1/1/2010-3/1/2021. Ultimately, 15 studies were included for comparison between compressed sensing cine and conventional imaging. RESULTS: Compared to conventional cine, there were small, statistically significant overestimation of LV mass, underestimation of stroke volume and LV end diastolic volume (mean difference 2.65 g [CL 0.57-4.73], 2.52 mL [CL 0.73-4.31], and 2.39 mL [CL 0.07-4.70], respectively). Attenuated differences persisted across studies using prospective gating (underestimated stroke volume) and non-prospective gating (underestimation of stroke volume, overestimation of mass). There were no significant differences in LV volumes or LV mass with high or low acceleration subgroups in reference to conventional cine except slight underestimation of ejection fraction among high acceleration studies. Reduction in breath hold acquisition time ranged from 33 to 64%, while reduction in total scan duration ranged from 43 to 97%. CONCLUSION: LV volume and mass assessment using compressed sensing CMR is accurate compared to conventional parallel imaging cine.


Heart , Magnetic Resonance Imaging , Humans , Heart Ventricles , Breath Holding , Magnetic Resonance Spectroscopy
3.
Radiol Med ; 126(9): 1159-1169, 2021 Sep.
Article En | MEDLINE | ID: mdl-34132927

BACKGROUND: Quantification of left atrial late gadolinium enhancement is a powerful clinical and research tool. Fibrosis burden has been shown to predict the success of pulmonary vein isolation, post-ablation reoccurrence, and major adverse cardiovascular events such as stroke. OVERVIEW: The standardized cardiovascular magnetic resonance imaging protocols 2020 update describes the key components of the examination. This review is a more in-depth guide, geared toward building left atrial late gadolinium enhancement imaging from the ground up. The standard protocol consists of the following: localization, pulmonary vein magnetic resonance angiography, cardiac cines, left ventricular, and atrial late gadolinium enhancement. We also review typical segmentation and post-processing techniques, as well as discuss pitfalls, limitations, and potential future innovations in this area. CONCLUSIONS: With sufficient experience and optimized protocols, left atrial late gadolinium enhancement imaging is a strong addition to the cardiac magnetic resonance imaging repertoire.


Contrast Media , Gadolinium , Heart Atria/diagnostic imaging , Image Enhancement , Magnetic Resonance Imaging/methods , Atrial Fibrillation/etiology , Fibrosis/complications , Fibrosis/diagnostic imaging , Heart Atria/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Angiography/methods
...