Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Int J Surg ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311927

RESUMEN

BACKGROUND AIMS: Self-expandable metallic stents (SEMSs) have been recommended for patients with unresectable malignant biliary obstruction while radiation-emitting metallic stents (REMSs) loaded with 125I seeds have recently been approved to provide longer patency and overall survival in malignant biliary tract obstruction. This trial is to evaluate the efficacy and safety of REMS plus hepatic arterial infusion chemotherapy (REMS-HAIC) versus SEMS plus HAIC (SEMS-HAIC) for unresectable perihilar cholangiocarcinoma (pCCA). METHODS: This multicenter randomized controlled trial recruited patients with unresectable Bismuth type III or IV pCCA between March 2021 and January 2023. Patients were randomly assigned (1:1 ratio) to receive either REMS-HAIC or SEMS-HAIC using permuted block randomization, with a block size of six. The primary endpoint was overall survival (OS). The secondary endpoints were time to symptomatic progression (TTSP), stent patency, relief of jaundice, quality of life, and safety. RESULTS: A total of 126 patients were included in the intent-to-treat population, with 63 in each group. The median OS was 10.2 months versus 6.7 months (P=0.002). The median TTSP was 8.6 months versus 5.4 months (P=0.003). The median stent patency was longer in the REMS-HAIC group than in the SEMS-HAIC group (P=0.001). The REMS-HAIC group showed better improvement in physical functioning scale (P<0.05) and fatigue symptoms (P<0.05) when compared to the SEMS-HAIC group. No significant differences were observed in relief of jaundice (85.7% vs. 84.1%; P=0.803) or the incidence of grade 3 or 4 adverse events (9.8% vs. 11.9%; P=0.721). CONCLUSION: REMS plus HAIC showed better OS, TTSP, and stent patency compared with SEMS plus HAIC in patients with unresectable Bismuth type III or IV pCCA with an acceptable safety profile.

2.
J Am Chem Soc ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300785

RESUMEN

Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect. It has been demonstrated that, unlike only one π bond in sp2-C, π electrons provided by one of the two alkynyl π bonds in sp-C can achieve proper interaction and speedy capture of lithium ions; thus, reversible Li-C coupling can be formed between electron-rich sp-C and lithium ions. In addition to interlayer intercalation in sp2-C regions, nanopores filling triangular-like cavities composed of highly conjugated sp-C contribute to the major capacity in flat voltage plateau regions. Therefore, a capture/pores filling-intercalation hybrid mechanism can be found in GDY. The coexistence of sp and sp2 carbon enables GDY electrodes with rapid Li+ diffusion, high capacity of over 1435 mAh g-1, extraordinary rate capability, and cyclic stability for more than 10000 cycles at 10A g-1. These results provide guidance for developing advanced carbon electrodes with optimized reaction kinetics for rechargeable batteries.

3.
J Cancer Res Ther ; 20(4): 1124-1129, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39206973

RESUMEN

ABSTRACT: The incidence of pancreatic cancer is increasing worldwide. Approximately, 60% of patients with pancreatic cancer have distant metastases at the time of diagnosis, of which only 10% can be removed using standard resection. Further, patients derive limited benefits from chemotherapy or radiotherapy. As such, alternative methods to achieve local control have emerged, including permanent iodine-125 seed interstitial brachytherapy. In 2023, the Chinese College of Interventionalists, affiliated with the Chinese Medical Doctor Association, organized a group of multi-disciplinary experts to compose guidelines for this treatment modality. The aim of this conference was to standardize the procedure for permanent iodine-125 seed interstitial brachytherapy, including indications, contraindications, pre-procedural preparation, procedural operations, complications, efficacy evaluation, and follow-up.


Asunto(s)
Braquiterapia , Radioisótopos de Yodo , Neoplasias Pancreáticas , Humanos , Braquiterapia/métodos , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Yodo/administración & dosificación , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patología , China , Consenso , Guías de Práctica Clínica como Asunto
4.
J Am Chem Soc ; 146(34): 23764-23774, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39149921

RESUMEN

Lithium-sulfur (Li-S) batteries enable a promising high-energy-storage system while facing practical challenges regarding lithium dendrites and lithium polysulfides (LiPSs) shuttling. Herein, a fascinating SO3H-functionalized graphdiyne (SOGDY) was developed by grafting SO3H onto GDY to modify the separator in Li-S batteries. It realizes structure-retained material transformation, that is, SOGDY retains the crystalline all-carbon network and uniform subnanopores from the initial GDY. The abundant SO3H and uniform pores create a rapid Li+ transport relay station, benefit rapid Li+ transport and even lithium deposition, and prevent lithium dendrite growth. The spatial obstruction and strong polar adsorption sites from SO3H effectively inhibit LiPS shuttling. Additionally, SOGDY establishes a fast electron-transfer pathway to facilitate the LiPS conversion. The SOGDY/PP separator exhibited steady cycling at 1 mA cm-2 over 3500 h in the Li∥Li symmetric battery and achieved outstanding low-temperature and high-rate performance in the Li-S battery with a high initial specific capacity of 804.5 mA h g-1 and a final capacity of 504.9 mA h g-1 after 500 cycles at 3 C and -10 °C. This work demonstrates that introducing a stable all-carbon network and uniform functionalized nanopores is an effective strategy to modify the Li-S battery separator.

5.
Nat Commun ; 15(1): 7331, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187493

RESUMEN

Controlling the precise growth of atoms is necessary to achieve manipulation of atomic composition and atomic position, regulation of electronic structure, and an understanding of reactions at the atomic level. Herein, we report a facile method for ordered anchoring of zero-valent platinum and manganese atoms with single-atom thickness on graphdiyne under mild conditions. Due to strong and incomplete charge transfer between graphdiyne and metal atoms, the formation of metal clusters and nanoparticles can be inhibited. The size, composition and structure of the bimetallic nanoplates are precisely controlled by the natural structure-limiting effect of graphdiyne. Experimental characterization clearly demonstrates such a fine control process. Electrochemical measurements show that the active site of platinum-manganese interface on graphdiyne guarantees the high catalytic activity and selectivity (~100%) for alkene-to-diol conversion. This work lays a solid foundation for obtaining high-performance nanomaterials by the atomic engineering of active site.

6.
Adv Mater ; : e2405493, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136062

RESUMEN

Overall water splitting is a promising technology for sustainable hydrogen production, but the primary challenge is removing bubbles from the electrode surface quickly to increase hydrogen production. Inspired by the directional fluid transport properties of natural biological surfaces like Nepenthes peristome and Morpho butterfly's wings, here a strategy is demonstrated to achieve highly efficient overall water splitting by a bubble-guidance electrode, that is, an anisotropic groove-micro/nanostructured porous electrode (GMPE). Gradient groove micro/nanostructures on the GMPE serve as high-speed bubble transmission channels and exhibit superior bubble-guidance capabilities. The synergistic effect of the asymmetric Laplace pressure generated between microscale porous structure and groove patterns and the buoyancy along the groove patterns pushes the produced bubbles directionally to spread, transport, and detach from the electrode surface in time. Moreover, the low adhesive nanosheet arrays are beneficial to reduce bubble size and increase bubble release frequency, which cooperatively improve mass transfer with the microscale structure. Notably, GMPE outperforms planar-micro/nanostructured porous electrode (PMPE) in hydrogen/oxygen evolution reactions, with GMPE||GMPE showing better water splitting performance than commercially available RuO2||20 wt.% Pt/C. This work improves electrodes for better mass transfer and kinetics in electrochemical reactions at solid-liquid-gas interfaces, offering insight for designing and preparing gas-involved photoelectrochemical electrodes.

7.
J Cancer Res Ther ; 20(4): 1109-1123, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39206972

RESUMEN

ABSTRACT: This expert consensus reviews current literature and provides clinical practice guidelines for the diagnosis and treatment of multiple ground glass nodule-like lung cancer. The main contents of this review include the following: ① follow-up strategies, ② differential diagnosis, ③ diagnosis and staging, ④ treatment methods, and ⑤ post-treatment follow-up.


Asunto(s)
Consenso , Neoplasias Pulmonares , Humanos , Diagnóstico Diferencial , Manejo de la Enfermedad , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Nódulos Pulmonares Múltiples/diagnóstico , Nódulos Pulmonares Múltiples/patología , Nódulos Pulmonares Múltiples/terapia , Estadificación de Neoplasias/normas , Guías de Práctica Clínica como Asunto
8.
Natl Sci Rev ; 11(8): nwae189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39007000

RESUMEN

A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between 'hot electron' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 µmol g-1 h-1 and remarkable long-term stability.

9.
Bull Environ Contam Toxicol ; 113(1): 9, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981934

RESUMEN

Cadmium (Cd) contamination of farmland soils leads to Cd accumulation in crops and reduced micronutrient uptake, posing grave risks to food safety. Herein, we investigated the enrichment and transportation patterns of Cd and trace elements in different parts of six wheat genotypes grown in weakly alkaline Cd-contaminated soils via pot experiments. The results revealed that the wheat grain variety with high Cd accumulation (Ningmai13) demonstrated a 1.94-fold increase compared to the variety with low accumulation (Yanong0428). The transfer factor of Cd from wheat straw to grain ranged from 0.319 to 0.761, while the transfer factor of Cd from root to straw ranged from 0.167 to 0.461. Furthermore, the concentrations of other metals in wheat grains followed the order of Zn > Mn > Fe > Cu. There was a significant positive correlation between Cd and Mn in grains, indicating a potential synergistic effect. Overall, this study provides valuable insights into the regulation of micronutrient intake to modulate Cd uptake in wheat.


Asunto(s)
Cadmio , Genotipo , Contaminantes del Suelo , Oligoelementos , Triticum , Triticum/metabolismo , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Oligoelementos/metabolismo , Oligoelementos/análisis , Suelo/química
10.
Chem Biol Interact ; 399: 111132, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964637

RESUMEN

The clinical application of doxorubicin (DOX) was limited by the serious cardiotoxicity. The traditional Chinese medicine Andrographis paniculata and its principal active component (Dehydroandrographolide, DA) have been well known for their diverse cardiovascular protective effects. However, the effects of DA on DOX-induced cardiotoxicity (DIC) were still unknown. In this study, we evaluated the effects and revealed the potential mechanisms of DA on DIC both in vivo and in vitro. The effects of DA on DIC were systematically assessed by echocardiography and histological assays. Western blot and flow cytometry were used to measure apoptosis of cardiomyocytes. Transmission electron microscopy and StubRFP-SensGFP-LC3 lentivirus were further used to assay autophagic flux. Our results showed that DA administration significantly improved cardiac function and attenuated DOX-induced cardiomyocyte apoptosis. Mechanically, DA restored autophagic flux and lysosome functions via inhibiting DOX-induced mTOR signal pathway activation and increasing the translocation of TFEB to the nucleus. However, activation of mTOR or knockdown of TFEB significantly inhibited the protective effects of DA against DIC by impacting lysosomal functions and autophagic flux. In conclusion, our results revealed that DA might be a potential cardioprotective agent against DIC.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Cardiotoxicidad , Diterpenos , Doxorrubicina , Miocitos Cardíacos , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Doxorrubicina/toxicidad , Autofagia/efectos de los fármacos , Diterpenos/farmacología , Diterpenos/química , Serina-Treonina Quinasas TOR/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Transducción de Señal/efectos de los fármacos , Cardiotoxicidad/prevención & control , Apoptosis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
11.
Phytomedicine ; 132: 155886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059092

RESUMEN

BACKGROUND: Shugan Lidan Xiaoshi Granules (SLXG) is a traditional Chinese medicine (TCM) formulation frequently employed to prevent and treat cholesterol gallstones. SLXG is formulated based on the Chaihu Shugan Formula found in an ancient Chinese medical book, a traditional remedy in China for centuries, and has demonstrated successful treatment of numerous patients with gallbladder stones. PURPOSE: This research sought to clarify the therapeutic impact and molecular mechanisms of SLXG and its active components in the treatment of cholesterol gallbladder stones. METHODS: The study employed network pharmacology, UPLC-HRMS transcriptome sequencing, animal model experiments, molecular docking, and Surface Plasmon Resonance (SPR) to explore the molecular mechanisms of SLXG and its relationship with Traditional Chinese Medicines (TCMs) and potential targets. Furthermore, PPI network analysis, along with GO and KEGG enrichment analyses, were performed to explore the potential mechanisms through which SLXG and its active ingredient, naringenin, prevent and treat cholesterol gallstones. The mechanism of action was further elucidated using an animal model for gallbladder stone formation. RESULTS: The study employed a network pharmacology and UPLC-HRMS to investigate the active compounds of SLXG for the treatment of cholesterol gallbladder stones, and subsequently constructed a network of therapeutic targets of SLXG. The results from gene enrichment analyses indicated that SLXG targets the metabolic pathway of bile secretion and the cholesterol metabolism pathway in addressing cholesterol gallbladder stones. The molecular docking results confirmed the interaction between the genes enriched in the pathways and the active ingredients in SLXG. Transcriptome sequencing results demonstrated that SLXG exerts its therapeutic effect on gallstones by regulating cholesterol and bile acid synthesis and metabolism. Furthermore, animal model experiments and SPR provided evidence that SLXG and its active ingredient, naringenin, exert therapeutic effects on cholesterol gallbladder stones by targeting the genes HMGCR, SOAT2, and UGT1A1, and influencing substances associated with cholesterol synthesis and metabolism. CONCLUSIONS: Using systematic network pharmacology methods combined with in vivo validation experiments, we uncovered the fundamental pharmacological effects and potential mechanisms of SLXG and its active ingredient, naringenin, in the treatment of cholesterol gallstones. This research underscores the valuable role that traditional remedies can play in addressing medical challenges and suggests a promising direction for further exploration of natural treatments for the disease.


Asunto(s)
Colesterol , Medicamentos Herbarios Chinos , Cálculos Biliares , Simulación del Acoplamiento Molecular , Cálculos Biliares/tratamiento farmacológico , Animales , Colesterol/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Modelos Animales de Enfermedad , Masculino , Farmacología en Red , Flavanonas
12.
Angew Chem Int Ed Engl ; : e202410413, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973379

RESUMEN

The catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back-donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron-rich properties on bromine bonded with sp-C in graphdiyne (PtBr NPs/Br-GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO-resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4 A mgPt -1, which is 20.8 times higher than the 20 % Pt/C. The catalyst also showed robust long-term stability with slight current density decay after 100 hours at 35 mA cm-2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron-rich, and can strengthen the adsorption of CO as well as enhance π back-donation of Pt to weaken the C-O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron-rich structure among active sites in Pt-halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.

13.
Med Phys ; 51(7): 4567-4580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861654

RESUMEN

BACKGROUND: While minimizing plan delivery time is beneficial for proton therapy in terms of motion management, patient comfort, and treatment throughput, it often poses a tradeoff with optimizing plan quality. A key component of plan delivery time is the energy switching time, which is approximately proportional to the number of energy layers, that is, the cardinality. PURPOSE: This work aims to develop a novel optimization method that can efficiently compute the pareto surface between plan quality and energy layer cardinality, for the planner to navigate through this quality-and-efficiency tradeoff and select the appropriate plan of a balanced tradeoff. METHODS: A new IMPT method CARD is proposed that (1) explicitly incorporates the minimization of energy layer cardinality as an optimization objective, and (2) automatically generates a set of plans sequentially with a descending order in number of energy layers. The energy layer cardinality is penalized through the l1,0-norm regularization with an upper bound, and the upper bound is monotonically decreased to compute a series of treatment plans with gradually decreased energy layer cardinality on the quality-and-efficiency pareto surface. For any given treatment plan, the plan optimality is enforced using dose-volume planning objectives and the plan deliverability is imposed through minimum-monitor-unit (MMU) constraints, with optimization solution algorithm based on iterative convex relaxation. RESULTS: The new method CARD was validated in comparison with the benchmark plan of all energy layers (P0), and a state-of-the-art method called MMSEL, using prostate, head-and-neck (HN), lung, pancreas, liver and brain cases. While labor-intensive and time-consuming manual parameter tuning was needed for MMSEL to generate plans of predefined energy layer cardinality, CARD automatically and efficiently computed all plans with sequentially decreasing predefined energy layer cardinality all at once. With the acceptable plan quality (i.e., no more than 110% of total optimization objective value from P0), CARD achieved the reduction of number of energy layers to 52% (from 77 to 40), 48% (from 135 to 65), 59% (from 85 to 50), 67% (from 52 to 35), 80% (from 50 to 40), and 30% (from 66 to 20), for prostate, HN, lung, pancreas, liver, and brain cases, respectively, compared to P0, with overall better plan quality than MMSEL. Moreover, due to the nonconvexity of the MMU constraint, CARD provided the similar or even smaller optimization objective than P0, at the same time with fewer number of energy layers, that is, 55 versus 77, 85 versus 135, 45 versus 52, and 25 versus 66 for prostate, HN, pancreas, and brain cases, respectively. CONCLUSIONS: We have developed a novel optimization algorithm CARD that can efficiently and automatically compute a series of treatment plans of any given energy layer sequentially, which allows the planner to navigate through the plan-quality and energy-layer-cardinality tradeoff and select the appropriate plan of a balanced tradeoff.


Asunto(s)
Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Factores de Tiempo , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Algoritmos , Masculino
14.
Angew Chem Int Ed Engl ; 63(35): e202406043, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866704

RESUMEN

Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat. -1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.

15.
Small Methods ; : e2301571, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795321

RESUMEN

The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.

16.
Adv Mater ; 36(30): e2402961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727517

RESUMEN

Artificial heterostructures with structural advancements and customizable electronic interfaces are fundamental for achieving high-performance lithium-ion batteries (LIBs). Here, a design idea for a covalently bonded lateral/vertical black phosphorus (BP)-graphdiyne oxide (GDYO) heterostructure achieved through a facile ball-milling approach, is designed. Lateral heterogeneity is realized by the sp2-hybridized mode P-C bonds, which connect the phosphorus atoms at the edges of BP with the carbon atoms of the terminal acetylene in GDYO. The vertical connection of the heterojunction of BP and GDYO is connected by P-O-C bond. Experimental and theoretical studies demonstrate that BP-GDYO incorporates interfacial and structural engineering features, including built-in electric fields, chemical bond interactions, and maximized nanospace confinement effects. Therefore, BP-GDYO exhibits improved electrochemical kinetics and enhanced structural stability. Moreover, through ex- and in-situ studies, the lithiation mechanism of BP-GDYO, highlighting that the introduction of GDYO inhibits the shuttle/dissolution effect of phosphorus intermediates, hinders volume expansion, provides more reactive sites, and ultimately promotes reversible lithium storage, is clarified. The BP-GDYO anode exhibits lithium storage performance with high-rate capacity and long-cycle stability (602.6 mAh g-1 after 1 000 cycles at 2.0 A g-1). The proposed interfacial and structural engineering is universal and represents a conceptual advance in building high-performance LIBs electrode.

17.
Adv Sci (Weinh) ; 11(28): e2401240, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733090

RESUMEN

Efficiently reconciling the substantial volume strain with maintaining the stabilities of both interfacial protection and three-dimensional (3D) conductive networks is a scientific and technical challenge in developing tin-based anodes for sodium ion storage. To address this issue, a proof-of-concept self-adaptive protection for the Sn anode is designed, taking advantage of the arbitrary substrate growth of graphdiyne. This protective layer, employing a flexible chain doping strategy, combines the benefits of 2D graphdiyne and linear chain structures to achieve 2D mechanical stability, electronic and ion conductions, ion selectivity, adequate elongation, and flexibility. It establishes close contact with the Sn particles and can adapt to dynamic size changes while effectively facilitating both electronic and ion transports. It successfully mitigates the detrimental effects of particle pulverization and coarsening induced by large-volume changes. The as-obtained Sn electrodes demonstrate exceptional stability, enduring 1800 cycles at a high current density of 2.5 A g-1. This strategy promises to address the general issues associated with large-strain electrodes in next-generation of high-energy-density batteries.

18.
Small ; : e2401347, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716685

RESUMEN

A challenge facing the chlor-alkali process is the lack of electrocatalyst with high activity and selectivity for the efficient industrial production of chlorine. Herein the authors report a new electrocatalyst that can generate multi-interface structure by in situ growth of graphdiyne on the surface of cobalt oxides (GDY/Co3O4), which shows great potential in highly selective and efficient chlorine production. This result is due to the strong electron transfer and high density charge transport between GDY and Co3O4 and the interconversion of the mixed valence states of the Co atoms itself. These intrinsic characteristics efficiently enhance the conductivity of the catalyst, facilitate the reaction kinetics, and improve the overall catalytic selectivity and activity. Besides, the protective effect of the formed GDY layer is remarkable endowing the catalyst with excellent stability. The catalyst can selectively produce chlorine in low-concentration of NaCl aqueous solution at room temperature and pressure with the highest Faraday efficiency of 80.67% and an active chlorine yield rate of 184.40 mg h-1 cm-2, as well as superior long-term stability.

19.
J Am Chem Soc ; 146(15): 10573-10580, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567542

RESUMEN

Atomic thick two-dimensional (2D) materials with exciting physical, chemical, and electronic properties are gaining increasing attention in next-generation science and technology, showing great promise in catalysis and energy science. However, the precise design and synthesis of efficient catalytic systems based on such materials still face many difficulties, especially in how to control the preparation of structurally determined, highly active, atomic-scale distribution of material systems. Here, we report that a highly active zerovalent osmium single-atom-layer with a thickness of single atom size has been successfully and controllably self-organized on the surface of 2D graphdiyne (GDY) material. Detailed characterizations showed that the incomplete charge transfer effect between the Os atoms and GDY not only stabilized the catalytic system but also improved the intrinsic activity, making the Gibbs free energy reach the best and resulting in remarkable performance with a small overpotential of 49 mV at 500 mA cm-2, large specific j0 of 18.6 mA cm-2, and turnover frequency of 3.89 H2 s-1 at 50 mV. In addition, the formation of sp-C-Os bonds guarantees the high long-term stability of 800 h at a large current density of 500 mA cm-2 in alkaline simulated seawater.

20.
BMC Complement Med Ther ; 24(1): 150, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580999

RESUMEN

BACKGROUND: Smilax china L. (SCL) is a traditional herbal medicine for the potential treatment of intrauterine adhesion (IUA). However, the mechanisms of action have not yet been determined. In this study, we explored the effects and mechanisms of SCL in IUA by network pharmacology, molecular docking and molecular biology experiments. METHODS: Active ingredients and targets of SCL were acquired from TCMSP and SwissTargetPrediction. IUA-related targets were collected from the GeneCards, DisGeNET, OMIM and TTD databases. A protein‒protein interaction (PPI) network was constructed by Cytoscape 3.9.1 and analysed with CytoHubba and CytoNCA to identify the core targets. The DAVID tool was used for GO and KEGG enrichment analyses. Furthermore, molecular docking was employed to assess the interaction between the compounds and key targets. Finally, the mechanisms and targets of SCL in IUA were verified by cellular experiments and western blot. RESULTS: A total of 196 targets of SCL were identified, among which 93 were related to IUA. Topological and KEGG analyses results identified 15 core targets that were involved in multiple pathways, such as inflammation, apoptosis, and PI3K/AKT signalling pathways. Molecular docking results showed that the active compounds had good binding to the core targets. In vitro experiments showed that astilbin (AST), a major component of SCL, significantly reduced TGF-ß-induced overexpression of fibronectin (FN), activation of the PI3K/AKT signalling pathway and the expression of downstream factors (NF-κB and BCL2) in human endometrial stromal cells, suggesting that AST ameliorates IUA by mediating the PI3K/AKT/NF-κB and BCL2 proteins. CONCLUSIONS: AST, a major component of SCL, may be a potential therapeutic agent for IUA. Moreover, its mechanism is strongly associated with regulation of the PI3K/AKT signalling pathway and the downstream NF-κB and BCL2 proteins. This study will provide new strategies that utilize AST for the treatment of IUA.


Asunto(s)
FN-kappa B , Smilax , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA