Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(8): 13001-13013, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859282

RESUMEN

The monitoring of hydrological elements in the polar region is the basis for the study of the dynamic environment under the ice. The traditional cross-season subglacial hydrological environment monitoring mainly relies on tether-type vertical profile measurement ice-based buoys, which have the advantages such as high reliability, high measurement accuracy, and real-time communication, while also has disadvantages of high-cost, large volume and weight, high power consumption, and complex layout. Therefore, it is urgent to develop a new type of ice-based profile buoy with low-cost, miniaturization, low power consumption, convenient deployment, and high reliability. In this paper, a novel optical fiber sensing scheme for ice-based buoy monitoring is proposed, which uses arrayed fiber grating to measure seawater temperature and depth profile and uses a dual-conduction mode resonance mechanism to measure seawater salinity. The temperature, depth, and salinity of seawater can be detected by an all-optical fiber technology in real-time. Preliminary experiments show that the temperature accuracy is ±0.1 °C in the range of -5∼35 °C, the salinity accuracy is ±0.03‰ in the range of 30‰âˆ¼40‰, and the vertical spatial resolution of depth can be adjusted in the range of 0∼1000 m, which can better meet the requirements of polar hydrological multi-layer profile observation. It can provide an innovative technology and equipment support for studying the spatiotemporal change process of the polar subglacial ocean.

2.
Front Microbiol ; 15: 1384367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751717

RESUMEN

Karst rocky desertification refers to the process of land degradation caused by various factors such as climate change and human activities including deforestation and agriculture on a fragile karst substrate. Nutrient limitation is common in karst areas. Moss crust grows widely in karst areas. The microorganisms associated with bryophytes are vital to maintaining ecological functions, including climate regulation and nutrient circulation. The synergistic effect of moss crusts and microorganisms may hold great potential for restoring degraded karst ecosystems. However, our understanding of the responses of microbial communities, especially abundant and rare taxa, to nutrient limitations and acquisition in the presence of moss crusts is limited. Different moss habitats exhibit varying patterns of nutrient availability, which also affect microbial diversity and composition. Therefore, in this study, we investigated three habitats of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under forest and on cliff rock. We measured soil physicochemical properties and enzymatic activities. We conducted high-throughput sequencing and analysis of soil microorganisms. Our finding revealed that autochthonal moss crusts under forest had higher nutrient availability and a higher proportion of copiotrophic microbial communities compared to lithophytic moss crusts under forest or on cliff rock. However, enzyme activities were lower in autochthonal moss crusts under forest. Additionally, rare taxa exhibited distinct structures in all three habitats. Analysis of co-occurrence network showed that rare taxa had a relatively high proportion in the main modules. Furthermore, we found that both abundant and rare taxa were primarily assembled by stochastic processes. Soil properties significantly affected the community assembly of the rare taxa, indirectly affecting microbial diversity and complexity and finally nutrient acquisition. These findings highlight the importance of rare taxa under moss crusts for nutrient acquisition. Addressing this knowledge gap is essential for guiding ongoing ecological restoration projects in karst rocky desertification regions.

3.
Proc Natl Acad Sci U S A ; 121(1): e2313773120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147648

RESUMEN

Climate change is a new disrupter to global fisheries systems and their governance frameworks. It poses a pressing management challenge, particularly in China, which is renowned as the world's largest fishing country and seafood producer. As climate change continues to intensify in the region and climate awareness grows within the country's national policy, the need to understand China's fisheries' resilience to the escalating climate crisis becomes paramount. In this study, we conduct an interdisciplinary analysis to assess the vulnerability and risk of China's marine capture fisheries in response to climate change. This study employs a spatially explicit, indicator-based approach with a coupled social-ecological framework, focusing on 67 species and 11 coastal regions. By integrating diverse sets of climatic, ecological, economic, societal, and governance indicators and information, we elucidate the factors that could hinder climate adaptation, including a limited understanding of fish early life stages, uncertainty in seafood production, unequal allocation and accessibility of resources, and inadequate consideration of inclusive governance and adaptive management. Our results show that species, which have managed to survive the stress of overfishing, demonstrate a remarkable ability to adapt to climate change. However, collapsing stocks such as large yellow croaker face a high risk due to the synergistic effects of inherent biological traits and external management interventions. We emphasize the imperative to build institutional, scientific, and social capacity to support fisheries adaptation. The scientific insights provided by this study can inform fisheries management decisions and promote the operationalization of climate-resilient fisheries in China and other regions.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Cambio Climático , Medio Social , China , Ecosistema , Peces
4.
Mol Breed ; 43(10): 73, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37795156

RESUMEN

Tomato is a leading vegetable in modern agriculture, and with global warming, drought has become an important factor threatening tomato production. Mitogen-activated protein kinase 3 (MAPK3) plays an important role in plant disease and stress resistance. To clarify the downstream target proteins of SlMAPK3 and the mechanism of stress resistance in tomato, this study was conducted with the SlMAPK3-overexpressing lines OE-1 and OE-2 and the CRISPR/Cas9-mediated mutant lines slmapk3-1 and slmapk3-2 under PEG 6000-simulated drought. The results of yeast two-hybrid (Y2H), pull-down, and coimmunoprecipitation (Co-IP) assays confirmed that SlASR4 (NP_001269248.1) interacted with SlMAPK3. Analyses of the SlASR4 protein structure and SlASR4 expression under PEG 6000 and BTH stress revealed that SlASR4 has a highly conserved protein structural domain involved in the drought stress response under PEG 6000 treatment. The function of the SlASR4 and SlMAPK3 downstream target protein, in drought resistance in tomato plants, was identified by virus-induced gene silencing (VIGS). This study clarified that SlMAPK3 interacts with SlASR4 to positively regulate drought resistance in tomato plants.

5.
Front Biosci (Landmark Ed) ; 28(9): 218, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37796691

RESUMEN

BACKGROUND: One of the crucial processes for small RNA synthesis and plant disease resistance is RNA interference (RNAi). Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), double-stranded RNA binding (DRB), and Argonaute are important proteins implicated in RNAi (AGO). Numerous significant woody plants belong to the Juglandaceae; walnut is one of the four groups of woody plants on earth and one of the four groups of dried fruits. METHODS: In order to correlate walnuts and their homologues, this work integrated numerous web resources from structural analysis and transcriptome data collected from gene families in order to elucidate the evolution and functional differentiation of RNA-related proteins in the walnut (Juglans rega) genome. RESULTS: 5 DCL genes, 13 RDR genes, 15 DRB genes, and 15 AGO genes are found in the walnut genome and encode conserved protein domains and motifs with similar subcellular distribution.There are three classes and seven subclasses of walnut AGO proteins. RDRS are primarily split into four categories, whereas DRBs can be divided into six. DCLs are separated into four groups. The walnut RDR1 copy number of 9 is the exception, with 7 of those copies being dispersed in clusters on chromosome 16. Proteins are susceptible to various levels of purification selection, but in walnut, purification selection drives gene creation. These findings also indicated some resemblance in other plants belonging to the walnut family. Under various tissues and stresses, many RNA-related genes in walnut produced abundant, selective expression. CONCLUSIONS: In this study, the genome of the Juglandaceae's DCL, RDR, DRB, and AGO gene families were discovered and analysed for the first time. The evolution, structure, and expression characteristics of these families were also preliminary studied, offering a foundation for the development and breeding of the walnut RNAi pathway.


Asunto(s)
Juglandaceae , Interferencia de ARN , Juglandaceae/genética , Juglandaceae/metabolismo , Plantas/genética , ARN , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
6.
Front Microbiol ; 14: 1251698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869663

RESUMEN

Introduction: Tomato yellow leaf curl virus (TYLCV), which is a typical member of the genus Begomovirus, causes severe crop yield losses worldwide. RNA interference (RNAi) is an important antiviral defense mechanism in plants, but whether plant beneficial microbes used as biocontrol agents would modulate RNAi in defense against TYLCV remains unclear. Methods: Here, we employed whole-transcriptome, bisulfite, and small RNA sequencing to decipher the possible role of Bacillus amyloliquefaciens Ba13 as a bacterial biocontrol agent against TYLCV in RNAi modulation. Results: Potted tomato plants were exposed to whiteflies for natural viral infection 14 days after bacterial inoculation. Compared with non-inoculated controls, the abundance of TYLCV gene in the leaves of inoculated plants decreased by 70.1% at 28 days post-infection, which mirrored the pattern observed for plant disease index. The expression of the ARGONAUTE family genes (e.g., AGO3, AGO4, AGO5, and AGO7) involved in antiviral defense markedly increased by 2.44-6.73-fold following bacterial inoculation. The methylation level at CpG site 228 (in the open reading frame region of the RNA interference suppressing gene AV2) and site 461 (in the open reading frame regions of AV1 and AV2) was 183.1 and 63.0% higher in inoculated plants than in non-inoculated controls, respectively. The abundances of 10 small interfering RNAs matched to the TYLCV genome were all reduced in inoculated plants, accompanied by enhancement of photosystem and auxin response pathways. Discussion: The results indicate that the application of Ba. amyloliquefaciens Ba13 enhances plant resistance to TYLCV through RNAi modulation by upregulating RNAi-related gene expression and enhancing viral genome methylation.

7.
Plants (Basel) ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765504

RESUMEN

Autophagy is a highly conserved self-degradation process that involves the degradation and recycling of cellular components and organelles. Although the involvement of autophagy in metabolic changes during fruit ripening has been preliminarily demonstrated, the variations in autophagic flux and specific functional roles in tomato fruit ripening remain to be elucidated. In this study, we analyzed the variations in autophagic flux during tomato fruit ripening. The results revealed differential expression of the SlATG8 family members during tomato fruit ripening. Transmission electron microscopy observations and dansylcadaverine (MDC) staining confirmed the presence of autophagy at the cellular level in tomato fruits. Furthermore, the overexpression of SlATG8f induced the formation of autophagosomes, increased autophagic flux within tomato fruits, and effectively enhanced the expression of ATG8 proteins during the color-transition phase of fruit ripening, thus promoting tomato fruit maturation. SlATG8f overexpression also led to the accumulation of vitamin C (VC) and soluble solids while reducing acidity in the fruit. Collectively, our findings highlight the pivotal role of SlATG8f in enhancing tomato fruit ripening, providing insights into the mechanistic involvement of autophagy in this process. This research contributes to a better understanding of the key factors that regulate tomato fruit quality and offers a theoretical basis for tomato variety improvement.

8.
Org Biomol Chem ; 21(21): 4409-4413, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37194415

RESUMEN

Aromatic ent-pimaranes are a group of aromatized tricyclic diterpenoids that exhibit diverse bioactivities. In this work, the first total syntheses of two aromatic ent-pimaranes were achieved via a C-ABC construction sequence enabled by chiral auxiliary controlled asymmetric radical polyene cyclization, and the subsequent substrate-controlled stereo-/regio-specific hydroboration of alkene allowed for access to both natural products with C19 oxidation modifications.

9.
Glob Chang Biol ; 29(13): 3545-3561, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37079435

RESUMEN

Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social-ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Cambio Climático , Aclimatación
10.
Mar Pollut Bull ; 191: 114904, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087829

RESUMEN

Water transparency is an important parameter for describing the optical properties of water. It reflects changes in marine environment and is of great significance for guiding the development and protection of marine environment. In this study, based on the algorithm proposed by Lee et al. in 2015, water transparency in the Yellow Sea from 2003 to 2022 was inverted. The results revealed that, in terms of spatial distribution, the water in western region of the Yellow Sea had relatively low transparency, whereas the water in the central and southern regions had high transparency. Regarding temporal trends, declining transparency was observed throughout most of the study period, but the trends reversed and transparency began to increase in 2017. Empirical orthogonal function analysis confirmed that water transparency was primarily influenced by the optical constituents of water. Long-term monitoring of water clarity is of significant importance for the preservation of marine ecological environments.


Asunto(s)
Ecosistema , Agua , Algoritmos , Ambiente , Monitoreo del Ambiente/métodos , China
11.
Plant Signal Behav ; 17(1): 2149942, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36453197

RESUMEN

Double-stranded RNA-binding proteins are small molecules in the RNA interference (RNAi) pathway that form the RNAi machinery together with the Dicer-like protein (DCL) as a cofactor. This machinery cuts double-stranded RNA (dsRNA) to form multiple small interfering RNAs (siRNAs). Our goal was to clarify the function of DRB in tomato resistant to TYLCV. In this experiment, the expression of the SlDRB1 and SlDRB4 genes was analyzed in tomato leaves by qPCR, and the function of SlDRB1 and SlDRB4 in resistance to TYLCV was investigated by virus-induced gene silencing (VIGS). Then, peroxidase activity was determined. The results showed that the expression of SlDRB1 gradually increased after inoculation of 'dwarf tomato' plants with tomato yellow leaf curl virus (TYLCV), but this gene was suppressed after 28 days. Resistance to TYLCV was significantly weakened after silencing of the SlDRB1 gene. However, there were no significant expression differences in SlDRB4 after TYLCV inoculation. Our study showed that silencing SlDRB1 attenuated the ability of tomato plants to resist virus infection; therefore, SlDRB1 may play a key role in the defense against TYLCV in tomato plants, whereas SlDRB4 is likely not involved in this defense response. Taken together, These results suggest that the DRB gene is involved in the mechanism of antiviral activity.


Asunto(s)
Begomovirus , Solanum lycopersicum , Solanum lycopersicum/genética , Interferencia de ARN , ARN Interferente Pequeño
12.
Analyst ; 147(19): 4400, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36098273

RESUMEN

Correction for 'High-efficiency and high-fidelity ssDNA circularisation via the pairing of five 3'-terminal bases to assist LR-LAMP for the genotyping of single-nucleotide polymorphisms' by Taiwen Li et al., Analyst, 2022, https://doi.org/10.1039/d2an01042a.

13.
Analyst ; 147(18): 3993-3999, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35968899

RESUMEN

The poor fidelity of T4 DNA ligase has always limited the simple detection of single-nucleotide polymorphisms (SNPs) and is only applicable to some special SNP types. This study developed a highly sensitive and specific detection method for SNPs based on high-fidelity single-stranded circularisation. It used T4 DNA ligase and rolling circle amplification (RCA) plus loop-mediated isothermal amplification (LAMP). Surprisingly, the cyclisation stage's efficiency greatly improved. The ligation fidelity was almost perfect via the unique pairing pattern between a long-paired base at the 5' terminus and only five bases at the 3' terminus on linear single-stranded DNA (l-DNA). Subsequently, LR-LAMP was performed and combined with the circularisation step for the simple detection of SNPs. The results showed that even 100 aM targets could be detected correctly and that a mutation rate of 0.1% or even 0.01% could be analysed via naked-eye visualisation or fluorescence detection, respectively. In addition, genomic DNA samples were used to evaluate the method, which indicated that it could effectively distinguish the SNPs of RPA190-T1145A in Phytophthora infestans. This strategy may play an important role in both circularisation of single-stranded DNA and detecting arbitrary SNPs.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , ADN/genética , ADN Ligasas , ADN de Cadena Simple/genética , Genotipo , Técnicas de Amplificación de Ácido Nucleico/métodos
14.
Front Biosci (Landmark Ed) ; 27(6): 186, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748262

RESUMEN

BACKGROUND: Tomato is an important part of daily food, rich source of multitude nutrients, suitable candidate for bio-pharmaceutical production due to berry size and has numerous health benefits. Transcriptional regulation of metalloregulatory heat shock protein-70 family plays pivotal role in plants tolerance against abiotic stress factors including salinity, heat, cold, drought and trace metal elements such as cadmium (Cd2+). METHODS: Here, we provide comprehensive report on in-silico identification of SlHsp70 family genes in tomato (Solanum lycopersicum) and their expression in tomato via qPCR analysis under broad range of trace metal elements. RESULTS: In-silico analysis revealed 23 SlHsp70 family genes in tomato, phylogenetically divided into four groups I-IV and displayed expression in all tissues. Gene Ontology (GO) analysis revealed that SlHSP70 proteins were membrane localized which were involved in metal ions translocation and oxidoreductase activity to counter hyper-accumlation of reactive oxygen species (ROS). CONCLUSIONS: Cd2+ is a widespread heavy metal soil contaminent which is continously polluting fertile soils, a knotty issue which has serious implications over photosynthesis, nitrogen assimilation, minerals and water absorption by plants. Plants exposure to Cd2+ and subsequent qRT-PCR analysis revealed increased expression of SlHsp70-11 in tomato roots, which can be employed in breeding low Cd2+ enriched tomato varieties.


Asunto(s)
Solanum lycopersicum , Cadmio/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
15.
PLoS One ; 17(6): e0268907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35696364

RESUMEN

Cotton (Gossypium hirsutum L.) is one of the most important cash crops primarily grown for fiber. It is a perennial crop with indeterminate growth pattern. Nitrogen (N) is extremely important for vegetative growth as balanced N-nutrition improves photosynthesis, resulting in better vegetative growth. Excessive N-supply results in more vegetative growth, which increases the incidence of insect pest and diseases' infestation, pollute surface and ground water, delays maturity and produces low crop yield with poor quality. The use of plant growth regulators (PGRs) is an emerging option to control excessive vegetative growth. The PGRs help in improving plant architecture, boll retention, boll opening, yield and quality by altering growth and physiological processes such as photosynthesis, assimilate partitioning and nutrients dynamic inside the plant body. Mepiquat chloride (1,1-dimethylpiperidinum chloride) is globally used PGR for canopy development and control of excessive vegetative growth in cotton. This study investigated the effect of mepiquat chloride (MC) and N application on yield and yield components of transgenic cotton variety 'BT-FSH-326'. Two N rates (0, 198 kg ha-1) and five MC rates (0, 30,60, 90 and 120 g ha-1) were included in the study. Results revealed that MC and N application improved boll weight, number of bolls per plant, and seed cotton and lint yields. The highest seed cotton and lint yields (3595 kg ha-1 and 1701 kg ha-1, respectively) were observed under foliar application of 198 kg ha-1 N and 120 g ha-1 MC. Fiber length, fiber strength, micronaire and uniformity were significantly improved with foliar application of MC and N. In conclusion, foliar application of MC and N could be helpful in improving yield and fiber quality of cotton.


Asunto(s)
Gossypium , Nitrógeno , Fibra de Algodón , Gossypium/genética , Piperidinas , Reguladores del Crecimiento de las Plantas
16.
Saudi J Biol Sci ; 29(4): 2998-3005, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531164

RESUMEN

Red pepper (Capsicum annuum L.) is one of the most commonly cultivated vegetable in the Mediterranean region. This study evaluated the effects of biochar derived from corncob and poultry litter on growth of red pepper (Capsicum annuum L.) and some chemical properties of a silty clay soil. The experiment consisted of two factors, i.e., biochar doses (0, 0.5, 1.0 and 2%) and poultry litter doses (0, 0.5, 1.0 and 2%). The number of days to 50% flowering, plant height, stem diameter, total number of leaves per plant, the number of main branches per plant, fresh root weight, root length, dry shoot weight, macro (P and K) and micro (Fe, Zn, Cu and Mn) nutrient concentrations of leaves were determined to compare the efficiency biochar and poultry litter. Moreover, post-harvest soil analysis was conducted to measure pH, organic matter, and macro and micronutrient contents. Biochar had varying impact on plant growth parameters, whereas poultry litter alone or in combination with biochar increased macro and micronutrient concentrations of soil and improved most of the growth parameters of red pepper. In contrast, sole biochar application had no significant impact on most of the growth parameters. Wider C/N ratio (107.7) of corncob derived biochar restricted the nitrogen supply for plant growth. The combination of 0.5% biochar and 2% poultry litter resulted in the highest plant height (36.7 cm) and stem diameter (0.69 cm). The results revealed that application of single biochar derived from corncob is insufficient to supply adequate nutrients for optimal plant growth. The application of biochar alone enhances carbon sequestration in soils, however most biochars like cornconb biochar do not contain sufficient available plant nutrients. Therefore, biochars should be applied along with mineral fertilizers or organic materials such as poultry manure which is rich in available plant nutrients.

17.
Saudi J Biol Sci ; 29(4): 2626-2633, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531166

RESUMEN

A combination of mineral nutrients and plant growth regulators should be assessed to improve crop performance under various abiotic stresses. There is a need to include plant growth regulators in fertilization regime of various crops along with essential mineral nutrients, especially when they are irrigated with polluted water with higher levels of heavy metals. The performance of pea was evaluated under cadmium (Cd) stress coupled with potassium (K) and jasmonic acid (JA) supplementation. The Cd stress (50 µM) was applied to soil (sandy loam) grown pea plants as basal dose after a month of sowing. The control and stressed plants were then supplemented with K (5 M), JA (0.5 mM) and their collective application along with control as distilled water. Cd stress showed a marked reduction in growth pattern, however, the collective supplementation sufficiently improved the growth pattern of stressed peas plants as evidenced by improvement in shoot length (cm), root length (cm), number of leaves per plant, leaf area (cm2), plant fresh and dry weight (gm). Potassium application under Cd stress significantly enhanced internodal distance (cm) while the number of seeds per pod and relative water contents remained nonsignificant. The applied treatment (JA + K) under Cd stress prominently improved enzymatic activities, which were measured as nitrate reductase activity (NRA), nitrite reductase activity (NiRA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Cd stress impacted the biochemical profile by enhancing antioxidant capacity (AC), antioxidant activity (AA), total phenols (TP), while reducing total soluble protein (TSP), chlorophyll 'a', chlorophyll 'b' and carotenoids. The combined application of JA and K under Cd stress enhanced AC, AA, TP, Chl a and b, TSP and carotenoids. The results indicate that foliar application of JA and K efficiently negated the harmful effects of Cd stress on peas.

18.
Saudi J Biol Sci ; 29(1): 255-260, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35002416

RESUMEN

Phosphorous (P) plays the prominent role to promote the plants storage functions and structural roles, as it is recognized as a vital component of ADP, ATP, Cell wall as well as a part of DNA. Soils acts as the sink to supply P to plants because soil pH and its physical condition are the main factor which regulate the solubility and availability P element. Phosphorus is not deficient in Pakistani soils but its availability to plants is the serious matter of concern. A pot experiment was conducted to evaluate P dynamics in two different soil series of Pakistan (Bahawalpur and Lyallpur) using Maize as test crop. The treatments applied were T0: Control (without any fertilizer), T1: Recommended DAP @648 mg pot-1, T2: Half dose DAP @324 mg pot-1, T3: Recommended rate of TSP @900 mg pot-1, T4: Half dose TSP @450 mg pot-1. Soil analysis showed that Bahawalpur soil has sandy clay loam texture with 33% clay and Lyallpur series has sandy loam texture with 15.5% clay; furthermore, these soil contain 4.6 and 2.12% CaCO3 respectively. Results showed an increase in P concentration in roots (23 mg kg-1) with the application of half dose of TSP in Lyallpur series and lowest in Bahawalpur series (14.6 mg kg-1) at recommended dose of DAP. Concentration of P in shoots responded the same; increase at half dose of TSP (16.7 mg kg-1) and lowest at full dose of DAP in Bahawalpur series as (15.58 mg kg-1). Adsorbed P (17 mg kg-1) was recorded highest in Bahawalpur soil with more clay amount in pot with DAP application but lower in Lyallpur soil series (14 mg kg-1) with the application of applied TSP. The PUE was recorded highest in Lyallpur series with the application of half dose of TSP and it was 61% more than control and was Highest in Bahawalpur series was with the application of recommended dose of DAP is 72% more than control treatment. On estimation; results showed that applied sources made an increase in P availability than control, but TSP gave better P uptake than DAP unless of rates applied. Soil of Lyallpur series showed better uptake of P and response to applied fertilizers than Bahawalpur series which showed more adsorption of P by high clay and CaCO3 amount. Conclusively, the study suggested that soil series play a crucial role in choosing fertilizer source for field application.

19.
PLoS One ; 16(12): e0260470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34852006

RESUMEN

Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.


Asunto(s)
Insecticidas/química , Larva/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Extractos Vegetales/química , Solanum lycopersicum/crecimiento & desarrollo , Animales , Azadirachta/química , Capsicum/química , Ajo/química , Insecticidas/farmacología , Pakistán , Extractos Vegetales/farmacología
20.
PLoS One ; 16(10): e0257952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34644343

RESUMEN

Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes ('Sehar-2006', 'Shafaq-2006', 'Faisalabad-2008', 'Lasani-2008', 'Millat-2011' and 'Punjab-2011') to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids' infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype 'Punjab-2011' recorded the lower aphid infestation than 'Faisalabad-2008', 'Sehar-2006', 'Lasani-2008' and 'Shafaq-2006'. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011' and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.


Asunto(s)
Control de Insectos/métodos , Control Biológico de Vectores/métodos , Triticum/genética , Predisposición Genética a la Enfermedad , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA