Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Environ Sci (China) ; 146: 55-66, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969462

RESUMEN

The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.


Asunto(s)
Biopelículas , Hierro , Calidad del Agua , Abastecimiento de Agua , Corrosión , Microbiología del Agua , Agua Potable/microbiología , Agua Potable/química , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Trihalometanos/análisis
2.
Adv Sci (Weinh) ; : e2402457, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940427

RESUMEN

Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.

3.
Brain Commun ; 6(1): fcad293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38162904

RESUMEN

Glioblastoma multiforme represents the most prevalent primary malignant brain tumour, while long non-coding RNA assumes a pivotal role in the pathogenesis and progression of glioblastoma multiforme. Nonetheless, the successful delivery of long non-coding RNA-based therapeutics to the tumour site has encountered significant obstacles attributable to inadequate biocompatibility and inefficient drug delivery systems. In this context, the use of a biofunctional surface modification of graphene oxide has emerged as a promising strategy to surmount these challenges. By changing the surface of graphene oxide, enhanced biocompatibility can be achieved, facilitating efficient transport of long non-coding RNA-based therapeutics specifically to the tumour site. This innovative approach presents the opportunity to exploit the therapeutic potential inherent in long non-coding RNA biology for treating glioblastoma multiforme patients. This study aimed to extract relevant genes from The Cancer Genome Atlas database and associate them with long non-coding RNAs to identify graphene therapy-related long non-coding RNA. We conducted a series of analyses to achieve this goal, including univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression. The resulting graphene therapy-related long non-coding RNAs were utilized to develop a risk score model. Subsequently, we conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses on the identified graphene therapy-related long non-coding RNAs. Additionally, we employed the risk model to construct the tumour microenvironment model and analyse drug sensitivity. To validate our findings, we referenced the IMvigor210 immunotherapy model. Finally, we investigated differences in the tumour stemness index. Through our investigation, we identified four promising graphene therapy-related long non-coding RNAs (AC011405.1, HOXC13-AS, LINC01127 and LINC01574) that could be utilized for treating glioblastoma multiforme patients. Furthermore, we identified 16 compounds that could be utilized in graphene therapy. Our study offers novel insights into the treatment of glioblastoma multiforme, and the identified graphene therapy-related long non-coding RNAs and compounds hold promise for further research in this field. Furthermore, additional biological experiments will be essential to validate the clinical significance of our model. These experiments can help confirm the potential therapeutic value and efficacy of the identified graphene therapy-related long non-coding RNAs and compounds in treating glioblastoma multiforme.

4.
Cancer Rep (Hoboken) ; 7(1): e1925, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043920

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) has a high mortality rate. Ferroptosis is linked to tumor initiation and progression. AIMS: This study aims to develop prognostic models of ferroptosis-related lncRNAs, evaluate the correlation between differentially expressed genes and tumor microenvironment, and identify prospective drugs for managing LUAD. METHODS AND RESULTS: In this study, transcriptomic and clinical data were downloaded from the TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the LASSO algorithm for constructing a prognostic model, we found that ferroptosis-related lncRNA-based gene signatures (FLncSig) had a strong prognostic predicting ability in the LUAD patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments reconfirmed that ferroptosis is related to receptor-ligand activity, enzyme inhibitor activity, and the IL-17 signaling pathway. Next, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE) algorithms, and pRRophetic were used to predict immunotherapy response and chemotherapy sensitivity. The IMvigor210 cohort was also used to validate the prognostic model. In the tumor microenvironment, Type_II_IFN_Response and HLA were found to be a group of low-risk pathways, while MHC_class_I was a group of high-risk pathways. Patients in the high-risk subgroup had lower TIDE scores. Exclusion, MDSC, CAF, and TAMM2 were significantly and positively correlated with risk scores. In addition, we found 15 potential therapeutic drugs for LUAD. Finally, differential analysis of stemness index based on mRNA expression (mRNAsi) indicated that mRNAsi was correlated with gender, primary tumor (T), distant metastasis (M), and the tumor, node, and metastasis (TNM) stage in LUAD patients. CONCLUSIONS: In conclusion, the prognostic model based on FLncSig can alleviate the difficulty in predicting the prognosis and immunotherapy of LUAD patients. The identified FLncSig and the screened drugs exhibit potential for clinical application and provide references for the treatment of LUAD.


Asunto(s)
Adenocarcinoma , Ferroptosis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Estudios Retrospectivos , Ferroptosis/genética , Pronóstico , Transformación Celular Neoplásica , Pulmón , Microambiente Tumoral/genética
5.
Biochem Biophys Rep ; 37: 101589, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38074997

RESUMEN

Single-cell multi-omics technologies have revolutionized cancer research by allowing us to examine individual cells at a molecular level. Unlike traditional bulk omics approaches, which analyze populations of cells together, single-cell multi-omics enables us to uncover the heterogeneity within tumors and understand the unique molecular characteristics of different cell populations. By doing so, we can identify rare subpopulations of cells that are influential in tumor growth, metastasis, and resistance to therapy. Moreover, single-cell multi-omics analysis provides valuable insights into the immune response triggered by various therapeutic interventions, such as immune checkpoint blockade, chemotherapy, and cell therapy. It also helps us better understand the intricate tumor microenvironment and its impact on patient prognosis and response to treatment. This comprehensive review focuses on the recent advancements in single-cell multi-omics methodologies, with an emphasis on single-cell multi-omics technologies. It highlights the important role of these techniques in uncovering the complexity of tumorigenesis and its multiple applications in cancer research, as well as their equally great contributions in other areas such as immunology. Through single-cell multi-omics, we gain a deeper understanding of cancer biology and pave the way for more precise and effective therapeutic strategies. Apart from those above, this paper also aims to introduce the advancements in live cell imaging technology, the latest developments in protein detection techniques, and explore their seamless integration with single-cell multi-omics technology.

6.
Biomed Pharmacother ; 168: 115142, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806087

RESUMEN

Regulatory T cells are a subgroup of T cells with immunomodulatory functions. Different from most cytotoxic T cells and helper T cells, they play a supporting role in the immune system. What's more, regulatory T cells often play an immunosuppressive role, which mainly plays a role in maintaining the stability of the immune system and regulating the immune response in the body. However, recent studies have shown that not only playing a role in autoimmune diseases, organ transplantation, and other aspects, regulatory T cells can also play a role in the immune escape of tumors in the body, through various mechanisms to help tumor cells escape from the demic immune system, weakening the anti-cancer effect in the body. For a better understanding of the role that regulatory T cells can play in cancer, and to be able to use regulatory T cells for tumor immunotherapy more quickly. This review focuses on the research progress of various mechanisms of regulatory T cells in the tumor environment, the related research of tumor cells acting on regulatory T cells, and the existing various therapeutic methods acting on regulatory T cells.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Linfocitos T Citotóxicos , Inmunomodulación , Microambiente Tumoral
7.
Front Microbiol ; 14: 1188526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440883

RESUMEN

Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.

8.
J Hazard Mater ; 457: 131744, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37285789

RESUMEN

High energy consumption is impedimental for eliminating refractory organics in wastewater by current technologies. Herein, we develop an efficient self-purification process for actual non-biodegradable dyeing wastewater at pilot scale, using N-doped graphene-like (CN) complexed Cu-Al2O3 supported Al2O3 ceramics (HCLL-S8-M) fixed-bed reactor without additional input. About 36% chemical oxygen demand removal was achieved within 20 min empty bed retention time and maintained stability for almost one year. The HCLL-S8-M structure feature and its interface on microbial community structure, functions, and metabolic pathways were analyzed by density-functional theory calculation, X-ray photoelectron spectroscopy, multiomics analysis of metagenome, macrotranscriptome and macroproteome. On the surface of HCLL-S8-M, a strong microelectronic field (MEF) was formed by the electron-rich/poor area due to Cu-π interaction from the complexation between phenolic hydroxy of CN and Cu species, driving the electrons of the adsorbed dye pollutants to the microorganisms through extracellular polymeric substance and the direct transfer of extracellular electrons, causing their degradation into CO2 and intermediates, which was degraded partly via intracellular metabolism. The lower energy feeding for the microbiome produced less adenosine triphosphate, resulting in little sludge throughout reaction. The MEF from electronic polarization is greatly potential to develop low-energy wastewater treatment technology.

9.
Research (Wash D C) ; 6: 0041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040507

RESUMEN

Tumor metastasis is a hallmark of colorectal cancer (CRC), in which exosome plays a crucial role with its function in intercellular communication. Plasma exosomes were collected from healthy control (HC) donors, localized primary CRC and liver-metastatic CRC patients. We performed proximity barcoding assay (PBA) for single-exosome analysis, which enabled us to identify the alteration in exosome subpopulations associated with CRC progression. By in vitro and in vivo experiments, the biological impact of these subpopulations on cancer proliferation, migration, invasion, and metastasis was investigated. The potential application of exosomes as diagnostic biomarkers was evaluated in 2 independent validation cohorts by PBA. Twelve distinct exosome subpopulations were determined. We found 2 distinctly abundant subpopulations: one ITGB3-positive and the other ITGAM-positive. The ITGB3-positive cluster is rich in liver-metastatic CRC, compared to both HC group and primary CRC group. On the contrary, ITGAM-positive exosomes show a large-scale increase in plasma of HC group, compared to both primary CRC and metastatic CRC groups. Notably, both discovery cohort and validation cohort verified ITGB3+ exosomes as potential diagnostic biomarker. ITGB3+ exosomes promote proliferation, migration, and invasion capability of CRC. In contrast, ITGAM+ exosomes suppress CRC development. Moreover, we also provide evidence that one of the sources of ITGAM+ exosomes is macrophage. ITGB3+ exosomes and ITGAM+ exosomes are proven 2 potential diagnostic, prognostic, and therapeutic biomarkers for management of CRC.

10.
Biomed Pharmacother ; 163: 114759, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37105077

RESUMEN

The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.


Asunto(s)
Leucemia Mieloide Aguda , Receptor Toll-Like 8 , Animales , Ratones , Leucemia Mieloide Aguda/metabolismo , Benzazepinas/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Línea Celular Tumoral
11.
Biomed Pharmacother ; 157: 114036, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436493

RESUMEN

Genetic instability can be caused by external factors and may also be associated with intracellular damage. At the same time, there is a large body of research investigating the mechanisms by which genetic instability occurs and demonstrating the relationship between genomic stability and tumors. Nowadays, tumorigenesis development is one of the hottest research areas. It is a vital factor affecting tumor treatment. Mechanisms of genomic stability and tumorigenesis development are relatively complex. Researchers have been working on these aspects of research. To explore the research progress of genomic stability and tumorigenesis, development, and treatment, the authors searched PubMed with the keywords "genome instability" "chromosome instability" "DNA damage" "tumor spread" and "cancer treatment". This extracts the information relevant to this study. Results: This review introduces genomic stability, drivers of tumor development, tumor cell characteristics, tumor metastasis, and tumor treatment. Among them, immunotherapy is more important in tumor treatment, which can effectively inhibit tumor metastasis and kill tumor cells. Breakthroughs in tumorigenesis development studies and discoveries in tumor metastasis will provide new therapeutic techniques. New tumor treatment methods can effectively prevent tumor metastasis and improve the cure rate of tumors.


Asunto(s)
Inestabilidad Genómica , Neoplasias , Humanos , Transformación Celular Neoplásica/genética , Daño del ADN/genética , Neoplasias/genética , Neoplasias/terapia
12.
Front Oncol ; 12: 960072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465402

RESUMEN

Extracellular RNA (exRNA) is a special form of RNA in the body. RNA carries information about genes and metabolic regulation in the body, which can reflect the real-time status of cells. This characteristic renders it a biomarker for disease diagnosis, treatment, and prognosis. ExRNA is transported through extracellular vesicles as a signal medium to mediate communication between cells. Tumor cells can release more vesicles than normal cells, thereby promoting tumor development. Depending on its easy detection, the advantages of non-invasive molecular diagnostic technology can be realized. In this systematic review, we present the types, vectors, and biological value of exRNA. We briefly describe new methods of tumor diagnosis and treatment, as well as the difficulties faced in the progress of such research. This review highlights the groundbreaking potential of exRNA as a clinical biomarker.

13.
Front Med (Lausanne) ; 9: 859318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213627

RESUMEN

Background: Patients with severe acute kidney injury (AKI) may require renal replacement therapy (RRT), such as hemodialysis and peritoneal dialysis. Neutrophil gelatinase-associated lipocalin (NGAL) is a sensitive indicator for early diagnosis and recognition of AKI; however, its predictive value of AKI-associated need for RRT needs further evaluation. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, relevant articles were systematically searched and selected from seven databases. The random effects model was applied to evaluate the predictive performance of NGAL for AKI requiring RRT. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of each included study. Results: A total of 18 studies including 1,787 patients with AKI and having an average NOS score of 7.67 were included in the meta-analysis. For plasma/serum NGAL, the pooled sensitivity and specificity with corresponding 95% confidence interval (CI) were 0.75 (95% CI: 0.68-0.81) and 0.76 (95% CI: 0.70-0.81), respectively. The pooled positive likelihood ratio (PLR) was 2.9 (95% CI: 2.1-4.1), and the pooled negative likelihood ratio (NLR) was 0.34 (95% CI: 0.25-0.46). Subsequently, the pooled diagnostic odds ratio (DOR) was 9 (95% CI: 5-16) using a random effects model, and the area under the curve (AUC) of summary receiver operating characteristic to summarize predictive accuracy was 0.82 (95% CI: 0.79-0.85). For urine NGAL, the pooled sensitivity, specificity, PLR, NLR, DOR, and AUC values were 0.78 (95% CI: 0.61-0.90), 0.77 (95% CI: 0.65-0.85), 3.4 (95% CI: 2.4-4.8), 0.28 (95% CI: 0.15-0.52), 12 (95% CI: 6-24), and 0.84 (95% CI: 0.80-0.87), respectively. Conclusion: Plasma/serum and urine NGAL levels performed comparably well in predicting AKI requiring RRT. Our findings suggested that NGAL is an effective predictive biomarker for the AKI-associated need for RRT. Nevertheless, more pieces of high-quality evidence and future trials with larger sample sizes are needed for further improvement of patient outcomes. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022346595], identifier [CRD42022346595].

14.
Plants (Basel) ; 11(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235352

RESUMEN

To explore the effects of iminodisuccinic acid (a chelating agent) on maize (Zea mays L.) seed germination under lead (Pb) stress, we comparatively analyzed the effects of applying different concentrations of iminodisuccinic acid (0, 5, 20, and 100 mmol·dm-3) and combined an addition of exogenous substances regulating reactive oxygen species production on maize seed germination, seedling growth, H2O2 content, NADPH oxidase activity, and antioxidant enzyme activities under Pb-stressed and Pb-free conditions. Iminodisuccinic acid (100 mmol·dm-3) significantly delayed seed germination under normal germination conditions and alleviated the inhibitory effects of Pb stress (20 mmol·dm-3) on seed germination. Under normal conditions (without Pb stress), the iminodisuccinic acid-induced inhibition of seed germination was enhanced by treatment with dimethylthiourea (a specific scavenger of reactive oxygen species) or diphenyleneiodonium chloride (a specific inhibitor of NADPH oxidase), but diminished by treatment with H2O2, CaCl2, diethyldithiocarbamic acid (a specific inhibitor of superoxide dismutase), or aminotriazole (a specific inhibitor of catalase). Under Pb stress, iminodisuccinic acid partially eliminated the excessive H2O2 accumulation, improved superoxide dismutase and catalase activity, and weakened the high NADPH oxidase activity. In addition, Ca2+ chelation may be essential for maintaining the reactive oxygen species' balance and improving seed germination and seedling growth by iminodisuccinic acid supplementation in maize under Pb stress. The proposed iminodisuccinic acid supplementation-based method improved maize seed germination in Pb-polluted soil.

15.
Front Mol Biosci ; 9: 938677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911967

RESUMEN

Ferroptosis, as a newly discovered non-apoptotic cell death mode, is beginning to be explored in different cancer. The particularity of ferroptosis lies in the accumulation of iron dependence and lipid peroxides, and it is different from the classical cell death modes such as apoptosis and necrosis in terms of action mode, biochemical characteristics, and genetics. The mechanism of ferroptosis can be divided into many different pathways, so it is particularly important to identify the key sites of ferroptosis in the disease. Herein, based on ferroptosis, we analyze the main pathways in detail. More importantly, ferroptosis is linked to the development of different systems of the tumor, providing personalized plans for the examination, treatment, and prognosis of cancer patients. Although some mechanisms and side effects of ferroptosis still need to be studied, it is still a promising method for cancer treatment.

16.
Front Nutr ; 9: 926024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967789

RESUMEN

Adipose tissue represents a candidate target for the treatment of metabolic illnesses, such as obesity. Brown adipose tissue (BAT), an important heat source within the body, promotes metabolic health through fat consumption. Therefore, the induction of white fat browning may improve lipid metabolism. Currently, the specific roles of circRNA in BAT and white adipose tissue (WAT) remain elusive. Herein, we conducted circRNA expression profiling of mouse BAT and WAT using RNA-seq. We identified a total of 12,183 circRNAs, including 165 upregulated and 79 downregulated circRNAs between BAT and WAT. Differentially expressed (DE) circRNAs were associated with the mitochondrion, mitochondrial part, mitochondrial inner membrane, mitochondrial envelope, therefore, these circRNAs may affect the thermogenesis and lipid metabolism of BAT. Moreover, DE circRNAs were enriched in browning- and thermogenesis-related pathways, including AMPK and HIF-1 signaling. In addition, a novel circRNA, circOgdh, was found to be highly expressed in BAT, formed by back-splicing of the third and fourth exons of the Ogdh gene, and exhibited higher stability than linear Ogdh. circOgdh was mainly distributed in the cytoplasm and could sponge miR-34a-5p, upregulating the expression of Atgl, a key lipolysis gene, which enhanced brown adipocyte lipolysis and suppressed lipid droplet accumulation. Our findings offer in-depth knowledge of the modulatory functions of circRNAs in BAT adipogenesis.

17.
Int J Biol Sci ; 18(9): 3621-3635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813477

RESUMEN

The poor sensitivity of clear cell renal cell carcinoma (ccRCC) to conventional chemotherapy and radiotherapy makes its treatment challenging. The Ndc80 kinetochore complex component (NUF2) is involved in the development and progression of several cancers. However, its role in ccRCC remains unclear. In this study, we investigated the biological functions and underlying mechanism of NUF2 in ccRCC. We found that NUF2 expression was increased in ccRCC and associated with poor prognosis. Altering NUF2 level affected cell proliferation, migration, and invasion. Moreover, NUF2 acted as a potential oncogene to promote the progression of ccRCC through epigenetic activation of high-mobility group AT-hook 2 (HMGA2) transcription by suppressing lysine demethylase 2A expression and affecting its occupancy on the HMGA2 promoter region to regulate histone H3 lysine 36 di-methylation modification. In addition, Kaplan-Meier and multivariate analysis revealed that patients whose NUF2 and HMGA2 were both elevated showed the shortest survival; and the number of upregulated markers acted as an independent predictor to evaluate survival probability. Thus, our results demonstrate that NUF2 promotes ccRCC progression, at least partly by epigenetically regulating HMGA2 transcription, and that the NUF2-HMGA2 axis could be an ideal therapeutic target and a promising prognostic indicator for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box , Neoplasias Renales , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Desmetilación , Proteínas F-Box/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias Renales/metabolismo , Lisina/metabolismo
18.
Front Oncol ; 12: 927249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860553

RESUMEN

C12orf59 is a novel gene widely expressed in diverse normal human tissues. Aberrant expression of C12orf59, which is involved in tumor progression, has been reported in a few types of cancer. However, its expression and biological function in esophageal squamous cell carcinoma (ESCC) remain largely unclear. Here, we found that the mRNA and protein levels of C12orf59 were prominently higher in both tumor tissues and most ESCC cell lines. Functionally, C12orf59 overexpression promoted ESCC cell proliferation, migration and invasion, whereas C12orf59 depletion worked oppositely. Mechanistically, C12orf59 exerted its oncogenic function through the induction of epithelial-mesenchymal transition (EMT) of ESCC cells, which relied on Yes-associated protein (YAP) dephosphorylation and nuclear translocation. Constitutively active YAP further facilitated cell migration, invasion and EMT induced by enforced C12orf59 overexpression. On the contrary, increased cell motility and EMT caused by enforced C12orf59 overexpression were dramatically repressed upon YAP inactivation by verteporfin. Thus, we conclude that YAP activation driven by C12orf59 contributes to the malignancy of ESCC through EMT and that targeting drugs for C12orf59 combined with YAP inhibitor may be a potential therapeutic strategy for ESCC.

19.
Biomed Pharmacother ; 150: 113064, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658234

RESUMEN

Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.


Asunto(s)
Neoplasias , Medicina de Precisión , Resistencia a Antineoplásicos/genética , Humanos , Biopsia Líquida , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Microambiente Tumoral
20.
BMJ Open ; 12(6): e055524, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672070

RESUMEN

INTRODUCTION: This study developed a prognostic nomogram of Hodgkin lymphoma (HL) for purpose of discussing independent risk factors for HL patients with Surveillance, Epidemiology and End Results (SEER) database. METHODS: We collected data of HL patients from 2010 to 2015 from the SEER database and divided it into two cohorts: the training and the verification cohort. Then the univariate and the multivariate Cox regression analyses were conducted in the training, the verification as well as the total cohort, after which the intersection of variables with statistical significance was taken as independent risk factors to establish the nomogram. The predictive ability of the nomogram was validated by the Concordance Index. Additionally, the calibration curve and receiver operating characteristic curve were implemented to evaluate the accuracy and discrimination. Finally, we obtained 1-year, 3-year and 5-year survival rates of HL patients. RESULTS: 10 912 patients were eligible for the study. We discovered that Derived American Joint Committee on Cancer (AJCC) Stage Group, lymphoma subtype, radiotherapy and chemotherapy were four independent risk factors affecting the prognosis of HL patients. The 1-year, 3-year and 5-year survival rates for high-risk patients were 85.4%, 79.9% and 76.0%, respectively. It was confirmed that patients with stage I or II had a better prognosis. Radiotherapy and chemotherapy had a positive impact on HL outcomes. However, patients with lymphocyte-depleted HL were of poor prognosis. CONCLUSIONS: The nomogram we constructed could better predict the prognosis of patients with HL. Patients with HL had good long-term outcomes but novel therapies are still in need for fewer complications.


Asunto(s)
Enfermedad de Hodgkin , Nomogramas , Enfermedad de Hodgkin/terapia , Humanos , Estadificación de Neoplasias , Pronóstico , Factores de Riesgo , Programa de VERF
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA