Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 137
1.
Chemistry ; : e202401150, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639722

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se···N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se···N interactions beyond the crystalline state.

2.
Nat Chem ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658798

Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.

3.
Org Lett ; 26(10): 2007-2012, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38442042

Here, we present a versatile modular strategy for crafting novel covalent organic cages (para-cage[n]arenes and meta-cage[n]arenes, n = 3,4) and bimacrocycles (meta-bimacrocyclic-arenes) with stable backbones and modifiable rims. These structures can be synthesized from commercially available aromatic multialdehydes in a three-step process: quantitative bromination, Suzuki-Miyaura reaction (yielding over 60%), and a rapid one-pot Friedel-Crafts reaction with paraformaldehyde. Notably, the cage[n]arenes exhibit a well-defined prismatic shape, and the bimacrocyclic-arenes display both dimeric and monomeric configurations.

4.
J Med Chem ; 67(5): 3860-3873, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38407934

Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.


Heparin, Low-Molecular-Weight , Heparin , Rats , Mice , Animals , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Antidotes/pharmacology , Antidotes/therapeutic use , Protamines/pharmacology , Biological Assay , Anticoagulants/pharmacology , Anticoagulants/therapeutic use
5.
ACS Appl Mater Interfaces ; 16(5): 5869-5880, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38277475

Structural conjugation greatly affects the optical and electronic properties of the COF photocatalyst. Herein, we show that 2D hydrazone COFs with either π-extended biphenyl (BPh-COF) or acetylene (AC-COF) frameworks demonstrated distinct charge transfer and photocatalytic performances. The two COFs show good crystallinity and decent porosity as their frameworks are enforced by intra/interlayers hydrogen bonding. However, computational and experimental data reveal that AC-COF managed broader visible-light absorption and narrower optical bandgaps and performed efficient photoinduced charge separation and transfer in comparison with BPh-COF, meaning that the ethynyl skeleton with enhanced planarity better improves the π-conjugation of the whole structure. As a result, AC-COF exhibited an ideal bandgap for rapid oxidative coupling of amines under visible-light irradiation. Furthermore, taking advantage of its better charge transfer properties, AC-COF demonstrated considerable enhanced product conversion and notable functional tolerance for metallaphotocatalytic C-O cross-coupling of a wide range of both aryl bromides and chlorides with alcohols. More importantly, besides being recoverable, AC-COF showcased the previously inaccessible etherification of dihaloarene. This report shows a facile approach for manipulating the structure-activity relationship and paves the way for the development of a COF photocatalyst for solar-to-chemical energy conversion.

6.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38169100

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

7.
Chem Soc Rev ; 53(3): 1592-1623, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38167687

Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.


Biocompatible Materials , Polymers , Hydrogen Bonding , Polymers/chemistry
8.
J Med Chem ; 67(3): 2176-2187, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38284525

Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.


Catenanes , Neuromuscular Blockade , gamma-Cyclodextrins , Adult , Humans , Animals , Rats , Sugammadex/pharmacology , Rocuronium
9.
Chempluschem ; 88(11): e202300465, 2023 Nov.
Article En | MEDLINE | ID: mdl-37752086

New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.

10.
Chem Commun (Camb) ; 59(77): 11580-11583, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37691557

In this paper, two types of solid phase 2D and 3D XBOFs were selectively constructed from identical building blocks of tetraphenylmethane tetrapyridine derivative and 1,4-diiodotetrafluorobenzene by changing the crystallization solvent. This 3D XBOF is a novel hybrid supramolecular organic framework with the synergistic control of hydrogen and halogen bonds.

11.
J Mater Chem B ; 11(37): 9027-9034, 2023 09 27.
Article En | MEDLINE | ID: mdl-37721029

Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.


Photochemotherapy , Animals , Humans , Mesoporphyrins , HeLa Cells
12.
J Org Chem ; 88(13): 8522-8531, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37303203

[1n]Paracyclophane has been known for nearly 40 years, but its derivatives and properties are understudied in comparison to those of other macrocyclic compounds. By the modification of pillar[5]arene, we successfully obtained five electron-rich pentagonal macrocycles (pseudo[n]-pillar[5]arenes, n = 1-4) with the decrease of substituted phenylenes one after another, achieving the partial derivatization of [15]paracyclophane skeleton at its phenylene sites. Pseudo[n]-pillar[5]arenes (P[n]P[5]s) served as a kind of macrocyclic host to form complexes with various guests, such as dinitriles, dihaloalkanes, and imidazolium salt, in a 1:1 host-guest stoichiometric ratio. The binding constants with the guest gradually reduce along the decrease of substituted phenylene segments from host P[1]P[5] to P[4]P[5]. It is worthy to note that P[n]P[5]s can adjust their conformations to the "pillar-like" shape effectively when binding with succinonitrile in the solid state.


Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Molecular Conformation
13.
Small ; 19(32): e2303069, 2023 Aug.
Article En | MEDLINE | ID: mdl-37165759

Amination of aryl chlorides by metallaphotocatalysis is highly desired but remains practically challenging. Meanwhile, relying on soluble noble-metal photocatalysts suffers from resource scarcity and structural instability which limit their practical application. Here in, a highly crystalline acetylene-based hydrazone-linked covalent organic framewok-1 (AC-COF-1) is reported that enables metallaphotocatalytic amination of aryl chlorides. The non-planar effect of hydrazone linkage and weak interlayer attraction of acetylene bond are minimized by intralayer hydrogen-bonding. As a result, the COF shows not only improved crystallinity and porosity, but also enhanced optical and electronic properties compared to a COF analog without hydrogen-bonding. Notably, dual AC-COF-1/Ni system affords CN coupling products from broad aryl chloride substrates in excellent yields (up to 99%) and good functional tolerance. Furthermore, AC-COF-1 is recoverable and reusable for seven times photocatalysis cycles. This report demonstrates simple approach to tune the structure-activity relationship in COFs at molecular level.

14.
Talanta ; 263: 124716, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37257239

A new design concept for pH-sensing supramolecular fluorescent probes is reported. Supramolecular fluorescent pH probes based on pro-guest are designed and prepared. Pro-guests are designed to degrade under acidic condition and convert to competitive guests to displace encapsulated dyes, which leads to a significant enhancement in fluorescence intensity. A library of potential fluorescent pH probes is generated and screened to discover workable probes. These probes are capable of detecting the acidic pH in solution phase. We confirm that these supramolecular probes could detect the acidic environment in endosomal compartments in live cells.


Acids , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , HeLa Cells
15.
RSC Med Chem ; 14(3): 563-572, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36970143

In the past two decades, photodynamic therapy (PDT) has become an effective method for the treatment of cancer. However, the posttreatment residue of photodynamic agents (PDAs) causes long-term skin phototoxicity. Here, we apply naphthalene-derived, box-like tetracationic cyclophanes, named NpBoxes, to bind to clinically used porphyrin-based PDAs to alleviate their posttreatment phototoxicity by reducing their free content in skin tissues and 1O2 quantum yield. We show that one of the cyclophanes, 2,6-NpBox, could include the PDAs to efficiently suppress their photosensitivity for the generation of reactive oxygen species. A tumour-bearing mouse model study revealed that, when Photofrin, the most widely used PDA in clinic, was administrated at a dose corresponding to the clinical one, 2,6-NpBox of the same dose could significantly suppress its posttreatment phototoxicity on the skin induced by simulated sunlight irradiation, without imposing a negative influence on its PDT efficacy.

16.
J Med Chem ; 65(24): 16893-16901, 2022 12 22.
Article En | MEDLINE | ID: mdl-36480913

Broad-spectrum agents for the reversal of residual curarization induced by neuromuscular blocking agents are of great significance. Here, we report a highly water-soluble cucurbit[8]uril (CB[8]) derivative as a broad-spectrum neuromuscular block reversal agent induced by both benzylisquinolinium and aminosteroid neuromuscular block agents by the supramolecular sequestration strategy. The UV/Vis competition titration assays suggest the high binding affinity of the CB[8] derivative toward both benzylisquinolinium-type cisatracurium besylate and aminosteroid-type rocuronium, vecuronium, and pancuronium, at the level of 107 M-1. In vivo studies demonstrate that the administration of the CB[8] derivative could significantly accelerate the recovery time compared to the placebo or neostigmine groups. The reversal activity of the CB[8] derivative is comparable to or higher than that of clinically approved sugammadex. Acute toxicity evaluations reveal that the CB[8]-derivative displays outstanding biocompatibility, with the maximum tolerance dose as high as 960 mg kg-1.


Neuromuscular Blockade , Neuromuscular Nondepolarizing Agents , gamma-Cyclodextrins , Neuromuscular Nondepolarizing Agents/therapeutic use , gamma-Cyclodextrins/pharmacology , gamma-Cyclodextrins/therapeutic use , Water
17.
ACS Appl Mater Interfaces ; 14(42): 47397-47408, 2022 Oct 26.
Article En | MEDLINE | ID: mdl-36223402

Excess bilirubin accumulates in the bodies of patients suffering from acute liver failure (ALF) to cause much irreversible damage and bring about serious clinical symptoms such as kernicterus, hepatic coma, or even death. Hemoperfusion is a widely used method for removing bilirubin from the blood, but clinically used adsorbents have unsatisfactory adsorption capacity and kinetics. In this study, we prepared four supramolecular organic framework microcrystals SOF-1-4 via slow evaporation of their aqueous solutions under infrared light. SOF-1-4 possess good regularity and excellent stability. We demonstrate that all the four SOFs could serve as adsorbents for bilirubin with fast adsorption kinetics within 20 min and ultrahigh adsorption capacity of 609.1 mg g-1, driven by electrostatic interaction and hydrophobicity. The superior adsorption performance of the SOFs outperformed most of the reported bilirubin adsorbents. Remarkably, SOF-3 could remove about 90% of bilirubin in the presence of 40 g L-1 BSA with a minimal loss of albumin and was thus further processed to a bead-shaped composite with a diameter of 2 mm with poly(ether sulfone) (PES). This PES-loaded SOF could efficiently adsorb bilirubin to the normal level from human plasma with an adsorption equilibrium concentration of 7.8 mg L-1 in 6 h through a dynamic hemoperfusion process. This work provides a new vitality for the development of novel bilirubin adsorbents for hemoperfusion therapy.


Bilirubin , Hemoperfusion , Humans , Hemoperfusion/methods , Adsorption , Albumins , Sulfones , Ethers
18.
Chem Sci ; 13(32): 9243-9248, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-36093029

Supramolecular sequestration and reversal of neuromuscular block (NMB) have great clinical applications. Water-soluble flexible organic frameworks (FOFs) cross-linked by disulfide bonds are designed and prepared. Different linker lengths are introduced to FOFs to give them varied pore sizes. FOFs are anionic nanoscale polymers and capable of encapsulating cationic neuromuscular blocking agents (NMBAs), including rocuronium (Roc), vecuronium (Vec), pancuronium (Panc) and cisatracurium (Cis). A host-guest study confirms that FOFs bind NMBAs in water. The multivalency interaction between FOFs and NMBAs is able to sequester NMBAs, and prevent them from escaping. These FOFs are non-toxic and biocompatible. Animal studies show that FOFs are effective for the reversal of NMB induced by Roc, Vec and Cis, which shorten the time to a train-of-four ratio of 0.9 by 2.6, 3.8 and 5.7-fold compared to a placebo, respectively.

19.
Chemistry ; 28(63): e202202200, 2022 Nov 11.
Article En | MEDLINE | ID: mdl-35965258

A supramolecular organic framework-type photocatalyst, named TM-SOF, is constructed by the self-assembly of cucurbit[8]uril and a tetra-arm monomer containing four N, N'-dimethyl 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazole (MPT) moieties. Benefiting from the multivalent assembly, a photocatalytically active supramolecular MPT dimer can be stably formed in TM-SOF. In addition, TM-SOF exhibits better stability against temperature, substrate, and light irradiation. As a result, TM-SOF shows a significantly improved performance for the photocatalytic aerobic oxidation of aryl boronic acids and thioethers. It is anticipated that this line of research will provide a facile approach for fabricating high-performance supramolecular photocatalysis systems.

20.
Acta Biomater ; 150: 254-264, 2022 09 15.
Article En | MEDLINE | ID: mdl-35917911

Since 1995, photodynamic therapy (PDT) has been utilized as an effective method for cancer treatment. However, the residues of photosensitizers in the normal tissues after PDT can be activated by sunlight to cause severe skin phototoxicity, for which currently there are no clinical solutions. As a result, post-PDT patients need to remain out of sunlight for up to five weeks, which produces great living and mental burdens for patients. Herein, we report that a biocompatible porous organic polymer (POP) with average 3.1 nm porosity is able to suppress the skin phototoxicity of clinically used porphyrin-based photodynamic agents (PDAs), including Photofrin, Talaporfin and Hiporfin, through an adsorption-elimination mechanism. Fluorescence titration and dialysis experiments show that POP can adsorb and retain the PDAs at a micromolar concentration. In vivo experiments demonstrate that POP can significantly suppress the skin phototoxicity caused by all the three PDAs without reducing their PDT efficacy. STATEMENT OF SIGNIFICANCE: Up to now, no efficient clinical treatment for the inhibition of post-PDT phototoxicity of clinically used porphyrin-based PDAs is available. In the manuscript, a water-soluble cationic porous organic polymer has been revealed to include three clinically used PDAs. In vivo experiments show that this inclusion remarkably reduces the content of PDAs in mouse skins, leading to significant alleviation of their post-PDT phototoxicity without no negative effect on their PDT efficacy. Thus, this work provides a strategy for overcoming the drawback of clinically used photodynamic agents.


Photochemotherapy , Porphyrins , Animals , Cell Line, Tumor , Mice , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Polymers , Porosity , Porphyrins/pharmacology
...