Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nanomicro Lett ; 16(1): 236, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963539

RESUMEN

Inspired by the Chinese Knotting weave structure, an electromagnetic interference (EMI) nanofiber composite membrane with a twill surface was prepared. Poly(vinyl alcohol-co-ethylene) (Pva-co-PE) nanofibers and twill nylon fabric were used as the matrix and filter templates, respectively. A Pva-co-PE-MXene/silver nanowire (Pva-co-PE-MXene/AgNW, PMxAg) membrane was successfully prepared using a template method. When the MXene/AgNW content was only 7.4 wt% (PM7.4Ag), the EMI shielding efficiency (SE) of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%. This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave, which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets. Simultaneously, the internal reflection and ohmic and resonance losses were enhanced. The PM7.4Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm-1. Moreover, the PMxAg nanocomposite membranes demonstrated an excellent thermal management performance, hydrophobicity, non-flammability, and performance stability, which was demonstrated by an EMI SE of 97.3% in a high-temperature environment of 140 °C. The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials. This strategy provides a new approach for preparing thin membranes with excellent EMI properties.

2.
J Orthop Surg Res ; 19(1): 336, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849918

RESUMEN

BACKGROUND: Arthroscopic tuberoplasty is an optional technique for managing irreparable rotator cuff tears. However, there is a lack of studies investigating the resistance force during shoulder abduction in cases of irreparable rotator cuff tears and tuberoplasty. HYPOTHESES: In shoulders with irreparable rotator cuff tears, impingement between the greater tuberosity (GT) and acromion increases the resistance force during dynamic shoulder abduction. Tuberoplasty is hypothesized to reduce this resistance force by mitigating impingement. STUDY DESIGN: Controlled laboratory study. METHODS: Eight cadaveric shoulders, with a mean age of 67.75 years (range, 63-72 years), were utilized. The testing sequence included intact rotator cuff condition, irreparable rotator cuff tears (IRCTs), burnishing tuberoplasty, and prosthesis tuberoplasty. Burnishing tuberoplasty refers to the process wherein osteophytes on the GT are removed using a bur, and the GT is subsequently trimmed to create a rounded surface that maintains continuity with the humeral head. Deltoid forces and actuator distances were recorded. The relationship between deltoid forces and actuator distance was graphically represented in an ascending curve. Data were collected at five points within each motion cycle, corresponding to actuator distances of 20 mm, 30 mm, 40 mm, 50 mm, and 60 mm. RESULTS: In the intact rotator cuff condition, resistance forces at the five points were 34.25 ± 7.73 N, 53.75 ± 7.44 N, 82.50 ± 14.88 N, 136.25 ± 30.21 N, and 203.75 ± 30.68 N. In the IRCT testing cycle, resistance forces were 46.13 ± 7.72 N, 63.75 ± 10.61 N, 101.25 ± 9.91 N, 152.5 ± 21.21 N, and 231.25 ± 40.16 N. Burnishing tuberoplasty resulted in resistance forces of 32.25 ± 3.54 N, 51.25 ± 3.54 N, 75.00 ± 10.69 N, 115.00 ± 10.69 N, and 183.75 ± 25.04 N. Prosthesis tuberoplasty showed resistance forces of 29.88 ± 1.55 N, 49.88 ± 1.36 N, 73.75 ± 7.44 N, 112.50 ± 7.07 N, and 182.50 ± 19.09 N. Both forms of tuberoplasty significantly reduced resistance force compared to IRCTs. Prosthesis tuberoplasty further decreased resistance force due to a smooth surface, although the difference was not significant compared to burnishing tuberoplasty. CONCLUSION: Tuberoplasty effectively reduces resistance force during dynamic shoulder abduction in irreparable rotator cuff tears. Prosthesis tuberoplasty does not offer a significant advantage over burnishing tuberoplasty in reducing resistance force. CLINICAL RELEVANCE: Tuberoplasty has the potential to decrease impingement, subsequently reducing resistance force during dynamic shoulder abduction, which may be beneficial in addressing conditions like pseudoparalysis.


Asunto(s)
Cadáver , Lesiones del Manguito de los Rotadores , Humanos , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/fisiopatología , Persona de Mediana Edad , Anciano , Fenómenos Biomecánicos , Masculino , Femenino , Articulación del Hombro/cirugía , Articulación del Hombro/fisiopatología , Manguito de los Rotadores/cirugía , Manguito de los Rotadores/fisiopatología , Artroscopía/métodos , Rango del Movimiento Articular , Síndrome de Abducción Dolorosa del Hombro/cirugía , Síndrome de Abducción Dolorosa del Hombro/fisiopatología
3.
Adv Mater ; : e2405502, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885327

RESUMEN

The development of bioorthogonal activation in drug release represents a promising avenue for precise and safe anticancer treatment. However, two significant limitations currently hinder their clinical application: i) the necessity for separate administration of the drug precursor and its corresponding activator, leading to poor drug accumulation and potential side effects; ii) the reliance on exogenous metal or organic activators for triggering bioorthogonal activation, which often exhibit low efficiency and systemic toxicity when extending to living animals. To overcome these limitations, a nitric oxide (NO)-mediated bioorthogonal codelivery nanoassembly, termed TTB-NH2@PArg, which comprises a precursor molecular (TTB-NH2) and amphipathic polyarginine (PArg) is developed. In TTB-NH2@PArg, PArg serves as both self-assembled nanocarrier for TTB-NH2 and a NO generator. In tumor microenvironment (TME), the TME-specific generation of NO acts as a gas activator, triggering in situ bioorthogonal bond formation that transforms TTB-NH2 into TTB-AZO. This tumor-specific generation of TTB-AZO not only serves as a potential photothermal agent for effective tumor inhibition but also induces fluorescence change that enables real-time monitoring of bioorthogonal activation. This study presents a drug codelivery approach that enables precise and safe control of bioorthogonal activation for anticancer treatment, improving cancer therapy efficacy while minimizing side effects.

4.
Acta Biomater ; 183: 292-305, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838903

RESUMEN

Limited success has been achieved in ferroptosis-induced cancer treatment due to the challenges related to low production of toxic reactive oxygen species (ROS) and inherent ROS resistance in cancer cells. To address this issue, a self-assembled nanodrug have been investigated that enhances ferroptosis therapy by increasing ROS production and reducing ROS inhibition. The nanodrug is constructed by allowing doxorubicin (DOX) to interact with Fe2+ through coordination interactions, forming a stable DOX-Fe2+ chelate, and this chelate further interacts with sorafenib (SRF), resulting in a stable and uniform nanoparticle. In tumor cells, overexpressed glutathione (GSH) triggers the disassembly of nanodrug, thereby activating the drug release. Interestingly, the released DOX not only activates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) to produce abundant H2O2 production for enhanced ROS production, but also acts as a chemotherapeutics agent, synergizing with ferroptosis. To enhance tumor selectivity and improve the blood clearance, the nanodrug is coated with a related cancer cell membrane, which enhances the selective inhibition of tumor growth and metastasis in a B16F10 mice model. Our findings provide valuable insights into the rational design of self-assembled nanodrug for enhanced ferroptosis therapy in cancer treatment. STATEMENT OF SIGNIFICANCE: Ferroptosis is a non-apoptotic form of cell death induced by the iron-regulated lipid peroxides (LPOs), offering a promising potential for effective and safe anti-cancer treatment. However, two significant challenges hinder its clinical application: 1) The easily oxidized nature of Fe2+ and the low concentration of H2O2 leads to a low efficiency of intracellular Fenton reaction, resulting in poor therapeutic efficacy; 2) The instinctive ROS resistance of cancer cells induce drug resistance. Therefore, we developed a simple and high-efficiency nanodrug composed of self-assembling by Fe2+ sources, H2O2 inducer and ROS resistance inhibitors. This nanodrug can effectively deliver the Fe2+ sources into tumor tissue, enhance intracellular concentration of H2O2, and reduce ROS resistance, achieving a high-efficiency, precise and safe ferroptosis therapy.


Asunto(s)
Antineoplásicos , Doxorrubicina , Ferroptosis , Nanopartículas , Especies Reactivas de Oxígeno , Animales , Ferroptosis/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/química , Nanopartículas/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Ratones Endogámicos C57BL , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Sinergismo Farmacológico
5.
Phytochemistry ; 225: 114192, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901624

RESUMEN

Meliasanines A-L, twelve previously unreported tirucallane-type triterpenoids, together with fifteen known ones, have been isolated from the stem bark of Melia toosendan. Their structures and absolute configurations were determined based on HRESIMS, and NMR, combined with calculated ECD and single-crystal X-ray diffraction analyses. Subsequently, all compounds except 10 were evaluated for their inhibitory effect on the production of nitric oxide induced by lipopolysaccharide in RAW264.7 macrophage cells. The results indicated that seven compounds (1, 13, 14, 16, 20, 22, and 23) exhibited significant NO inhibitory effects, with IC50 values ranging from 1.35 to 5.93 µM, which were more effective than the positive control indomethacin (IC50 = 13.18 µM). Moreover, the corresponding results of Western blot analysis revealed that meliasanine A (1) can significantly suppress the protein expression of inducible nitric oxide synthase and cyclooxygenase 2 in a concentration-dependent manner. The mechanism study suggested that meliasanine A exerts an anti-inflammatory effect via the nuclear factor-κB signaling pathway by suppressing phosphorylation of P65 and IκBα.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Melia , FN-kappa B , Óxido Nítrico , Transducción de Señal , Triterpenos , Ratones , Animales , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Óxido Nítrico/biosíntesis , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Estructura Molecular , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Melia/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Corteza de la Planta/química , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad
6.
Arthrosc Tech ; 13(4): 102910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38690351

RESUMEN

Extra-articular ganglion cysts arising from the gastrocnemius tendon near popliteal vessels can cause pain and claudication. Open resection of this kind of cyst has been described frequently because the vessels can be well protected with a retractor. However, it's a challenge to remove cysts that are near vessels under arthroscopy, because a retractor cannot be used in arthroscopic surgery. This article will report a method of arthroscopic resection for extra-articular ganglion cysts near popliteal vessels.

7.
MedComm (2020) ; 5(5): e555, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706741

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1-glycolysis-apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.

8.
J Am Chem Soc ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753624

RESUMEN

The efficacy of photodynamic therapy is hindered by the hypoxic environment in tumors and limited light penetration depth. The singlet oxygen battery (SOB) has emerged as a promising solution, enabling oxygen- and light-independent 1O2 release. However, conventional SOB systems typically exhibit an "always-ON" 1O2 release, leading to potential 1O2 leakage before and after treatment. This not only compromises therapeutic outcomes but also raises substantial biosafety concerns. In this work, we introduce a programmable singlet oxygen battery, engineered to address all the issues discussed above. The concept is illustrated through the development of a tumor-microenvironment-responsive pyridone-pyridine switch, PyAce, which exists in two tautomeric forms: PyAce-0 (pyridine) and PyAce (pyridone) with different 1O2 storage half-lives. In its native state, PyAce remains in the pyridone form, capable of storing 1O2 (t1/2 = 18.5 h). Upon reaching the tumor microenvironment, PyAce is switched to the pyridine form, facilitating rapid and thorough 1O2 release (t1/2 = 16 min), followed by quenched 1O2 release post-therapy. This mechanism ensures suppressed 1O2 production pre- and post-therapy with selective and rapid 1O2 release at the tumor site, maximizing therapeutic efficacy while minimizing side effects. The achieved "OFF-ON-OFF" 1O2 therapy showed high spatiotemporal selectivity and was independent of the oxygen supply and light illumination.

9.
Tissue Eng Part A ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38562117

RESUMEN

Extensively researched tissue engineering strategies involve incorporating cells into suitable biomaterials, offering promising alternatives to boost tissue repair. In this study, a hybrid scaffold, Gel-DCM, which integrates a photoreactive gelatin-hyaluronic acid hydrogel (Gel) with an oriented porous decellularized cartilage matrix (DCM), was designed to facilitate chondrogenic differentiation and cartilage repair. The Gel-DCM exhibited excellent biocompatibility in vitro, promoting favorable survival and growth of human adipose-derived stem cells (hADSCs) and articular chondrocytes (hACs). Gene expression analysis indicated that the hACs expanded within the Gel-DCM exhibited enhanced chondrogenic phenotype. In addition, Gel-DCM promoted chondrogenesis of hADSCs without the supplementation of exogenous growth factors. Following this, in vivo experiments were conducted where empty Gel-DCM or Gel-DCM loaded with hACs/hADSCs were used and implanted to repair osteochondral defects in a rat model. In the control group, no implants were delivered to the injury site. Interestingly, macroscopic, histological, and microcomputed tomography scanning results revealed superior cartilage restoration and subchondral bone reconstruction in the empty Gel-DCM group compared with the control group. Moreover, both hACs-loaded and hADSCs-loaded Gel-DCM implants exhibited superior repair of hyaline cartilage and successful reconstruction of subchondral bone, whereas defects in the control groups were predominantly filled with fibrous tissue. These observations suggest that the Gel-DCM can provide an appropriate three-dimensional chondrogenic microenvironment, and its combination with reparative cell sources, ACs or ADSCs, holds great potential for facilitating cartilage regeneration.

10.
Biochem Biophys Res Commun ; 710: 149885, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588612

RESUMEN

Oxidative stress is a key factor in the disruption of cartilage homeostasis during the development of osteoarthritis (OA). Organic selenium (Se)-containing compounds such as diselenides have excellent antioxidant activity and may prevent related diseases. We aimed to examine the benefits of the synthetic small molecule diphenyl diselenide (DPDSe) in OA models in vitro and in vivo. Our findings showed that DPDSe could maintain extracellular matrix (ECM) homeostasis and inhibit reactive oxygen species (ROS) production in IL-1ß-treated chondrocytes. In a destabilization of the medial meniscus (DMM)-induced OA mouse model, intra-articular administration of DPDSe alleviated joint degeneration, as evidenced by a decrease in the OARSI score and the restoration of collagen II (COL2) and MMP-13 expression in cartilage tissues. We confirmed that DDS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in IL-1ß-treated chondrocytes, and its chondroprotective effects were significantly counteracted when Nrf2 signaling was blocked by the inhibitor ML385 or by siRNA-mediated Nrf2 knockdown. The relatively strong performance of DPDSe makes it an ideal candidate for further trials as a disease-modifying OA drug (DMOAD).


Asunto(s)
Derivados del Benceno , Compuestos de Organoselenio , Osteoartritis , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Transducción de Señal , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Condrocitos/metabolismo , Interleucina-1beta/metabolismo
11.
Cancer Immunol Res ; 12(6): 731-743, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572955

RESUMEN

We described previously a human natural killer (NK) cell population that upregulates PD-L1 expression upon recognizing and reacting to tumor cells or exposure to a combination of IL12, IL18, and IL15. Here, to investigate the safety and efficacy of tumor-reactive and cytokine-activated (TRACK) NK cells, human NK cells from umbilical cord blood were expanded, transduced with a retroviral vector encoding soluble (s) IL15, and further cytokine activated to induce PD-L1 expression. Our results show cryopreserved and thawed sIL15_TRACK NK cells had significantly improved cytotoxicity against non-small cell lung cancer (NSCLC) in vitro when compared with non-transduced (NT) NK cells, PD-L1+ NK cells lacking sIL15 expression (NT_TRACK NK), or NK cells expressing sIL15 without further cytokine activation (sIL15 NK cells). Intravenous injection of sIL15_TRACK NK cells into immunodeficient mice with NSCLC significantly slowed tumor growth and improved survival when compared with NT NK and sIL15 NK cells. The addition of the anti-PD-L1 atezolizumab further improved control of NSCLC growth by sIL15_TRACK NK cells in vivo. Moreover, a dose-dependent efficacy was assessed for sIL15_TRACK NK cells without observed toxicity. These experiments indicate that the administration of frozen, off-the-shelf allogeneic sIL15_TRACK NK cells is safe in preclinical models of human NSCLC and has potent antitumor activity without and with the administration of atezolizumab. A phase I clinical trial modeled after this preclinical study using sIL15_TRACK NK cells alone or with atezolizumab for relapsed or refractory NSCLC is currently underway (NCT05334329).


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Interleucina-15 , Células Asesinas Naturales , Neoplasias Pulmonares , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Antígeno B7-H1/metabolismo , Ratones , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Ratones SCID , Ratones Endogámicos NOD , Femenino
12.
Adv Mater ; 36(28): e2404296, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685574

RESUMEN

Fluorescence imaging-guided photodynamic therapy (FIG-PDT) holds promise for cancer treatment, yet challenges persist in poor imaging quality, phototoxicity, and insufficient anti-tumor effect. Herein, a novel nanoplatform, LipoHPM, designed to address these challenges, is reported. This approach employs an acid-sensitive amine linker to connect a biotin-modified hydrophilic polymer (BiotinPEG) with a new hydrophobic photosensitizer (MBA), forming OFF-state BiotinPEG-MBA (PM) micelles via an aggregation-caused quenching (ACQ) effect. These micelles are then co-loaded with the tumor penetration enhancer hydralazine (HDZ) into pH-sensitive liposomes (LipoHPM). Leveraging the ACQ effect, LipoHPM is silent in both fluorescence and reactive oxygen species (ROS) generation during blood circulation but restores both properties upon disassembly. Following intravenous injection in tumor-bearing mice, LipoHPM actively targets tumor cells overexpressing biotin-receptors, contributing to enhanced tumor accumulation. Upon cellular internalization, LipoHPM disassembles within lysosomes, releasing HDZ to enhance tumor penetration and inhibit tumor metastasis. Concurrently, the micelles activate fluorescence for tumor imaging and boost the production of both type-I and type-II ROS for tumor eradication. Therefore, the smart LipoHPM synergistically integrates near-infrared emission, activatable tumor imaging, robust ROS generation, efficient anti-tumor and anti-metastasis activity, successfully overcoming limitations of conventional photosensitizers and establishing itself as a promising nanoplatform for potent FIG-PDT applications.


Asunto(s)
Micelas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Imagen Óptica , Liposomas/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Rayos Infrarrojos , Nanopartículas/química , Polímeros/química , Biotina/química
13.
Angew Chem Int Ed Engl ; 63(14): e202316323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38317057

RESUMEN

We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Plásmidos , ADN , Poliaminas
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123956, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38301571

RESUMEN

Portable Raman spectroscopy coupled with partial least squares regression (PLSR) model was performed for monitoring and predicting four quality indicators, moisture content, water activity, polysaccharide content and microbial content of the fresh-cut Chinese yam at different storage temperatures. The variations in the four key indicators were first depicted through a spider web diagram as the storage temperature changed. More importantly, the four key indicators can be accurately monitored and predicted through optimized PLSR models combining with Raman spectroscopy. Among all of the PLSR models for the four indicators, the regression model for moisture content was relatively the best. In addition, storage temperature played a significant role on the model performance of PLSR. The model performance for all indicators at room temperature and high temperature was better than the corresponding PLSR models at refrigeration and freezing conditions. Especially at 25 ℃, the R2 in the calibration set basically reached 0.9. These observations indicated that portable Raman spectroscopy, a simple and easy-to-use detection technique, can monitor and predict the multiple quality indicators of fresh-cut Chinese yam combined with effectively PLSR model, which would be conducive to their applications in food industry.


Asunto(s)
Dioscorea , Análisis de los Mínimos Cuadrados , Temperatura , Espectrometría Raman
16.
Nutr Metab Cardiovasc Dis ; 34(4): 1036-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267324

RESUMEN

BACKGROUND AND AIMS: Chronic Kidney Disease (CKD) is characterized by a high inflammation status with ever-increasing prevalence, and defined as low estimated glomerular filtration rate (eGFR) or albuminuria. Both low eGFR and albuminuria can have independent effects on the body. The dietary inflammatory index (DII) is a validated tool used to assess the inflammatory potential of the diet. We aim to explore not only the association between DII and CKD, but also the associations of DII with low eGFR and albuminuria, respectively. In addition, their associations in different subgroups remain to be explored. METHODS AND RESULTS: 18,070 participants from the 2011-2018 NHANES with complete data of dietary intake and laboratory data were involved in our study. The data of 24-hour dietary recall interview was used to calculate DII, CKD could be reflected by laboratory data of creatinine and albumin. Then weighted multivariate logistic regression models and subgroup analyses were performed. The prevalence of low eGFR, albuminuria and CKD were 6.8%, 9.8% and 14.5%, respectively. A positive association between DII and low eGFR was observed (OR=1.12, 95%CI: 1.05-1.21), Q2, Q3 and Q4 are positively associated with a significant 39%, 65% and 71% increased risk of low eGFR compared with Q1 (P for trend<0.05). DII was also associated with CKD (OR=1.06, 95%CI: 1.01-1.11). CONCLUSION: Significant positive associations of DII with CKD and low eGFR were observed. But we didn't find such association between DII and albuminuria.


Asunto(s)
Albuminuria , Insuficiencia Renal Crónica , Adulto , Humanos , Tasa de Filtración Glomerular , Encuestas Nutricionales , Albuminuria/diagnóstico , Albuminuria/epidemiología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/complicaciones , Dieta/efectos adversos
17.
BMC Musculoskelet Disord ; 25(1): 31, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172847

RESUMEN

BACKGROUND: Rotator cuff tears (RCT) is a common musculoskeletal disorder in the shoulder which cause pain and functional disability. Diabetes mellitus (DM) is characterized by impaired ability of producing or responding to insulin and has been reported to act as a risk factor of the progression of rotator cuff tendinopathy and tear. Long non-coding RNAs (lncRNAs) are involved in the development of various diseases, but little is known about their potential roles involved in RCT of diabetic patients. METHODS: RNA-Sequencing (RNA-Seq) was used in this study to profile differentially expressed lncRNAs and mRNAs in RCT samples between 3 diabetic and 3 nondiabetic patients. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to annotate the function of the differentially expressed genes (DEGs). LncRNA-mRNA co-expression network and competing endogenous RNA (ceRNA) network were constructed to elucidate the potential molecular mechanisms of DM affecting RCT. RESULTS: In total, 505 lncRNAs and 388 mRNAs were detected to be differentially expressed in RCT samples between diabetic and nondiabetic patients. GO functional analysis indicated that related lncRNAs and mRNAs were involved in metabolic process, immune system process and others. KEGG pathway analysis indicated that related mRNAs were involved in ferroptosis, PI3K-Akt signaling pathway, Wnt signaling pathway, JAK-STAT signaling pathway and IL-17 signaling pathway and others. LncRNA-mRNA co-expression network was constructed, and ceRNA network showed the interaction of differentially expressed RNAs, comprising 5 lncRNAs, 2 mRNAs, and 142 miRNAs. TF regulation analysis revealed that STAT affected the progression of RCT by regulating the apoptosis pathway in diabetic patients. CONCLUSIONS: We preliminarily dissected the differential expression profile of lncRNAs and mRNAs in torn rotator cuff tendon between diabetic and nondiabetic patients. And the bioinformatic analysis suggested some important RNAs and signaling pathways regarding inflammation and apoptosis were involved in diabetic RCT. Our findings offer a new perspective on the association between DM and progression of RCT.


Asunto(s)
Diabetes Mellitus , MicroARNs , ARN Largo no Codificante , Lesiones del Manguito de los Rotadores , Humanos , ARN Largo no Codificante/genética , Manguito de los Rotadores/metabolismo , Lesiones del Manguito de los Rotadores/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética
18.
Soft Matter ; 20(5): 1089-1099, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38221881

RESUMEN

An exciting result is reported in this study where a polypropylene (PP) foam with a high open-cell content was achieved by constructing a thermally conductive network for the first time. PP and nano-graphite particles were used as substrate and filler, respectively, to prepare the PP-graphite (PP-G) composite foam by twin-screw blending, hot pressing, and supercritical CO2 foaming. The nano-graphite particles can effectively adjust the microstructure of the PP-G foam and achieve a high porosity. When the amount of nano-graphite is 10.0 wt%, the PP-G foam exhibits optimal sound absorption performance, compression resistance, heat insulation, and hydrophobic properties. In the human-sensitive frequency range of 1000-6000 Hz, the corresponding average SAC is above 0.9, and the internal tortuosity is 5.27. After 50 cycles of compression, the compressive stress is 980 kPa and the SAC loss is only 7.8%. This study also innovatively proposed a new strategy to achieve the simple and rapid preparation of open-cell PP foams by increasing the thermal conductivity of the foaming substrate.

19.
Med Biol Eng Comput ; 62(5): 1459-1473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252371

RESUMEN

Ultrasonic transit time (TT)-based local pulse wave velocity (PWV) measurement is defined as the distance between two beam positions on a segment of common carotid artery (CCA) divided by the TT in the pulse wave propagation. However, the arterial wall motions (AWMs) estimated from ultrasonic radio frequency (RF) signals with a limited number of frames using the motion tracking are typically discrete. In this work, we develop a method involving motion tracking combined with reconstructive interpolation (MTRI) to reduce the quantification errors in the estimated PWs, and thereby improve the accuracy of the TT-based local PWV measurement for CCA. For each beam position, normalized cross-correlation functions (NCCFs) between the reference (the first frame) and comparison (the remaining frames) RF signals are calculated. Thereafter, the reconstructive interpolation is performed in the neighborhood of the NCCFs' peak to identify the interpolation-deduced peak locations, which are more exact than the original ones. According to which, the improved AWMs are obtained to calculate their TT along a segment of the CCA. Finally, the local PWV is measured by applying a linear regression fit to the time-distance result. In ultrasound simulations based on the pulse wave propagation models of young, middle-aged, and elderly groups, the MTRI method with different numbers of interpolated samples was used to estimate AWMs and local PWVs. Normalized root mean squared errors (NRMSEs) between the estimated and preset values of the AWMs and local PWVs were calculated and compared with ones without interpolation. The means of the NRMSEs for the AWMs and local PWVs based on the MTRI method with one interpolated sample decrease from 1.14% to 0.60% and 7.48% to 4.61%, respectively. Moreover, Bland-Altman analysis and coefficient of variation were used to validate the performance of the MTRI method based on the measured local PWVs of 30 healthy subjects. In conclusion, the reconstructive interpolation for the pulse wave estimation improves the accuracy and repeatability of the carotid local PWV measurement.


Asunto(s)
Arterias Carótidas , Análisis de la Onda del Pulso , Persona de Mediana Edad , Anciano , Humanos , Análisis de la Onda del Pulso/métodos , Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos
20.
Biochem Pharmacol ; 219: 115960, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049008

RESUMEN

Prostate cancer is the most common malignant tumor among men worldwide. Currently, the main treatments are radical prostatectomy, radiotherapy, chemotherapy, and endocrine therapy. However, most of them are poorly effective and induce side effects. Polo-like kinase 1 (PLK1) regulates cell cycle and mitosis. Its inhibitor BI2536 promotes the therapeutic effect of nilotinib in chronic myeloid leukemia, enhances the sensitivity of neural tube cell tumors to radiation therapy and PLK1 silencing enhances the sensitivity of squamous cell carcinoma to cisplatin. Therefore, the aim of this study was to evaluate the effect of the PLK1 inhibitor L-shaped ortho-quinone analog TE6 on prostate cancer. In vitro on prostate cancer cells showed that TE6 inhibited PLK1 protein expression and consequently cell proliferation by blocking the cell cycle at G2 phase. In vivo on a subcutaneous tumor model in nude mice confirmed that TE6 effectively inhibited tumor growth in nude mice, inhibited PLK1 expression and regulated the expression of cell cycle proteins such as p21, p53, CDK1, Cdc25C, and cyclinB1. Thus, PLK1 was identified as the target protein of TE6, these results reveal the critical role of PLK1 in the growth and survival of prostate cancer and point out the ability of TE6 on targeting PLK1, being a potential drug for prostate cancer therapy.


Asunto(s)
Fase G2 , Quinasa Tipo Polo 1 , Neoplasias de la Próstata , Quinonas , Quinasa Tipo Polo 1/antagonistas & inhibidores , Quinonas/química , Quinonas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Fase G2/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Humanos , Animales , Ratones , Masculino , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA