Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.065
1.
Opt Lett ; 49(11): 3255-3258, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824377

A high-peak-power, widely tunable range long-wave infrared optical parametric oscillator (OPO) based on the BaGa4Se7 (BGSe) crystal is demonstrated in this Letter. Pumped by a 1064 nm Nd:YAG laser, a high-peak-power of 0.15 MW was achieved at 9.8 µm with a pulse width of 5.0 ns. At 11.0 µm, a high beam quality of M2x = 4.1 and M2y = 3.3 was achieved. By rotating the BGSe crystal, a broad tuning range of 6.7-13.9 µm was realized. Furthermore, a theoretical analysis was conducted to elucidate the reasons behind the improvement in beam quality in the x-direction as the wavelength of the idler wave increases.

2.
Sci Data ; 11(1): 555, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816429

Intracranial aneurysms (IAs) are present in 2-6% of the global population and can be catastrophic upon rupture with a mortality rate of 30-50%. IAs are commonly detected through time-of-flight magnetic resonance angiography (TOF-MRA), however, this data is rarely available for research and training purposes. The provision of imaging resources such as TOF-MRA images is imperative to develop new strategies for IA detection, rupture prediction, and surgical training. To support efforts in addressing data availability bottlenecks, we provide an open-access TOF-MRA dataset comprising 63 patients, of which 24 underwent interval surveillance imaging by TOF-MRA. Patient scans were evaluated by a neuroradiologist, providing aneurysm and vessel segmentations, clinical annotations, 3D models, in addition to 3D Slicer software environments containing all this data for each patient. This dataset is the first to provide interval surveillance imaging for supporting the understanding of IA growth and stability. This dataset will support computational and experimental research into IA dynamics and assist surgical and radiology training in IA treatment.


Intracranial Aneurysm , Magnetic Resonance Angiography , Intracranial Aneurysm/diagnostic imaging , Humans
4.
J Org Chem ; 89(10): 6974-6986, 2024 May 17.
Article En | MEDLINE | ID: mdl-38703123

A LiBr-promoted formal C(sp3)-H bond insertion reaction between ß-carbonyl esters and sulfoxonium ylides is established. This practical reaction has a wide range of substrate scope for both ß-carbonyl esters and sulfoxonium ylides to give a variety of 1,4-dicarbonyl compounds with 43-94% yields. The reaction features transition-metal-free reaction conditions and exclusive C-alkylation chemselectivity. The use of bench-stable sulfoxonium ylides overcomes previous methods that require transition metal as catalysts and unstable diazo compounds or toxic haloketones as alkylation reagents.

5.
J Magn Reson Imaging ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38708838

BACKGROUND: Chronic kidney disease (CKD) is associated with increased, and early cardiovascular disease risk. Changes in hemodynamics within the left ventricle (LV) respond to cardiac remodeling. The LV hemodynamics in nondialysis CKD patients are not clearly understood. PURPOSE: To use four-dimensional blood flow MRI (4D flow MRI) to explore changes in LV kinetic energy (KE) and the relationship between LV KE and LV remodeling in CKD patients. STUDY TYPE: Retrospective. POPULATION: 98 predialysis CKD patients (Stage 3: n = 21, stage 4: n = 21, and stage 5: n = 56) and 16 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession (SSFP) cine sequence, 4D flow MRI with a fast field echo sequence, T1 mapping with a modified Look-Locker SSFP sequence, and T2 mapping with a gradient recalled and spin echo sequence. ASSESSMENT: Demographic characteristics (age, sex, height, weight, blood pressure, heart rate, aortic regurgitation, and mitral regurgitation) and laboratory data (eGFR, Creatinine, hemoglobin, ferritin, transferrin saturation, potassium, and carbon dioxide bonding capacity) were extracted from patient records. Myocardial T1, T2, LV ejection fraction, end diastolic volume (EDV), end systolic volume, LV flow components (direct flow, delayed ejection, retained inflow, and residual volume) and KE parameters (peak systolic, systolic, diastolic, peak E-wave, peak A-wave, E/A ratio, and global) were assessed. The KE parameters were normalized to EDV (KEiEDV). Parameters were compared between disease stage in CKD patients, and between CKD patients and healthy controls. STATISTICAL TESTS: Differences in clinical and imaging parameters between groups were compared using one-way ANOVA, Kruskal Walls and Mann-Whitney U tests, chi-square test, and Fisher's exact test. Pearson or Spearman's correlation coefficients and multiple linear regression analysis were used to compare the correlation between LV KE and other clinical and functional parameters. A P-value of <0.05 was considered significant. RESULTS: Compared with healthy controls, peak systolic (24.76 ± 5.40 µJ/mL vs. 31.86 ± 13.18 µJ/mL), systolic (11.62 ± 2.29 µJ/mL vs. 15.27 ± 5.10 µJ/mL), diastolic (7.95 ± 1.92 µJ/mL vs. 13.33 ± 5.15 µJ/mL), peak A-wave (15.95 ± 4.86 µJ/mL vs. 31.98 ± 14.51 µJ/mL), and global KEiEDV (9.40 ± 1.64 µJ/mL vs. 14.02 ± 4.14 µJ/mL) were significantly increased and the KEiEDV E/A ratio (1.16 ± 0.67 vs. 0.69 ± 0.53) was significantly decreased in CKD patients. As the CKD stage progressed, both diastolic KEiEDV (10.45 ± 4.30 µJ/mL vs. 12.28 ± 4.85 µJ/mL vs. 14.80 ± 5.06 µJ/mL) and peak E-wave KEiEDV (15.30 ± 7.06 µJ/mL vs. 14.69 ± 8.20 µJ/mL vs. 19.33 ± 8.29 µJ/mL) increased significantly. In multiple regression analysis, global KEiEDV (ß* = 0.505; ß* = 0.328), and proportion of direct flow (ß* = -0.376; ß* = -0.410) demonstrated an independent association with T1 and T2 times. DATA CONCLUSION: 4D flow MRI-derived LV KE parameters show altered LV adaptations in CKD patients and correlate independently with T1 and T2 mapping that may represent myocardial fibrosis and edema. TECHNICAL EFFICACY: Stage 3.

6.
bioRxiv ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38798487

Tau reduction is a promising therapeutic strategy for Alzheimer's disease. In numerous models, tau reduction via genetic knockout is beneficial, at least in part due to protection against hyperexcitability and seizures, but the underlying mechanisms are unclear. Here we describe the generation and initial study of a new conditional Tau flox model to address these mechanisms. Given the protective effects of tau reduction against hyperexcitability, we compared the effects of selective tau reduction in excitatory or inhibitory neurons. Tau reduction in excitatory neurons mimicked the protective effects of global tau reduction, while tau reduction in inhibitory neurons had the opposite effect and increased seizure susceptibility. Since most prior studies used knockout mice lacking tau throughout development, we crossed Tau flox mice with inducible Cre mice and found beneficial effects of tau reduction in adulthood. Our findings support the effectiveness of tau reduction in adulthood and indicate that excitatory neurons may be a key site for its excitoprotective effects. SUMMARY: A new conditional tau knockout model was generated to study the protective effects of tau reduction against hyperexcitability. Conditional tau reduction in excitatory, but not inhibitory, neurons was excitoprotective, and induced tau reduction in adulthood was excitoprotective without adverse effects.

7.
Langmuir ; 40(21): 11030-11038, 2024 May 28.
Article En | MEDLINE | ID: mdl-38747679

Gold-based nanostructures with well-defined morphologies and hollow interiors have significant potential as a versatile platform for various plasmonic applications including biomedical diagnostics and sensing. In this study, we report the synthesis of Au@Ag core-shell nanocrystals with perfect octahedral shapes and tunable edge lengths via seeded growth. These nanocrystals were then oxidatively carved into yolk-shell nanocages with a retained octahedral morphology. The increase in octahedral edge length and volume of the interior hollow cavity synergistically leads to a red-shift of the LSPR peak. As a result, the optimized Au@AuAg yolk-shell octahedral nanocages showed a remarkable temperature increase of 23 °C upon 15 min irradiation of an 808 nm laser at a power density of 1 W cm-2. This study provides a feasible strategy for creating octahedral AuAg nanostructures with tunable sizes and hollow interiors and validates their promising use in NIR photothermal conversion.

8.
J Funct Biomater ; 15(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38786646

Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.

9.
J Cardiothorac Surg ; 19(1): 271, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702771

BACKGROUND: MicroRNA-200b-3p (miR-200b-3p) plays a pivotal role in inflammatory responses and is implicated in various inflammatory disorders. In this study, we aim to explore the role of miR-200b-3p in the inflammatory response in heart failure (HF). METHODS: Patients diagnosed with heart failure and age-matched healthy controls were studied. Peripheral blood samples from participants were collected for RNA-seq analysis to explore the expression profile of miR-200b-3p. The predictive value of miR-200b-3p and ZEB1 in the prognosis of heart failure was evaluated by analyzing the receiver operating characteristic (ROC) curve. Bioinformatics analysis and double luciferase reporter gene analysis were used to confirm the interaction between miR-200b-3p and ZEB1. Real-time quantitative polymerase chain reaction (QRT-PCR) was used to detect the expression levels of miR-200b-3p and ZEB1 in cardiopulmonary bypass. Additionally, the effects of miR-200b-3p on myocardial cell line (H9c2) injury were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS: In the extracardiac circulation of HF patients, miR-200b-3p expression was significantly reduced, while ZEB1 levels were notably elevated. Analysis of the ROC curve revealed that miR-200b-3p and ZEB1 have predictive value in the prognosis of HF patients. The double luciferase reporter experiment demonstrated that miR-200b-3p binds to ZEB1 and inhibits its expression. Overexpression of miR-200b-3p demonstrated a remarkable ability to alleviate inflammation and inhibit the damage to myocardial cells in vivo. CONCLUSION: MiR-200b-3p can target and inhibit ZEB1, reducing the inflammatory reaction of myocardial cells. The miR-200b-3p/ZEB1 network may be helpful in preventing and treating HF.


Heart Failure , Inflammation , MicroRNAs , Zinc Finger E-box-Binding Homeobox 1 , Humans , Zinc Finger E-box-Binding Homeobox 1/genetics , MicroRNAs/genetics , Heart Failure/genetics , Male , Inflammation/genetics , Inflammation/metabolism , Female , Middle Aged , Gene Expression Regulation
10.
Mol Cancer ; 23(1): 95, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720319

BACKGROUND: Dysregulation of immune surveillance is tightly linked to the development of metabolic dysfunction-associated steatohepatitis (MASH)-driven hepatocellular carcinoma (HCC); however, its underlying mechanisms remain unclear. Herein, we aimed to determine the role of interleukin-21 receptor (IL-21R) in MASH-driven HCC. METHODS: The clinical significance of IL-21R was assessed in human HCC specimens using immunohistochemistry staining. Furthermore, the expression of IL-21R in mice was assessed in the STAM model. Thereafter, two different MASH-driven HCC mouse models were applied between IL-21R-deficient mice and wild type controls to explore the role of IL-21R in MASH-driven HCC. To further elucidate the potential mechanisms by which IL-21R affected MASH-driven HCC, whole transcriptome sequencing, flow cytometry and adoptive lymphocyte transfer were performed. Finally, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescent staining, chromatin immunoprecipitation assay and western blotting were conducted to explore the mechanism by which IL-21R induced IgA+ B cells. RESULTS: HCC patients with high IL-21R expression exhibited poor relapse-free survival, advanced TNM stage and severe steatosis. Additionally, IL-21R was demonstrated to be upregulated in mouse liver tumors. Particularly, ablation of IL-21R impeded MASH-driven hepatocarcinogenesis with dramatically reduction of lipid accumulation. Moreover, cytotoxic CD8+ T lymphocyte activation was enhanced in the absence of IL-21R due to the reduction of immunosuppressive IgA+ B cells. Mechanistically, the IL-21R-STAT1-c-Jun/c-Fos regulatory axis was activated in MASH-driven HCC and thus promoted the transcription of Igha, resulting in the induction of IgA+ B cells. CONCLUSIONS: IL-21R plays a cancer-promoting role by inducing IgA+ B cells in MASH-driven hepatocarcinogenesis. Targeting IL-21R signaling represents a potential therapeutic strategy for cancer therapy.


B-Lymphocytes , Carcinoma, Hepatocellular , Fatty Liver , Immunoglobulin A , Liver Neoplasms , Signal Transduction , Animals , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/etiology , Gene Expression Regulation, Neoplastic , Immunoglobulin A/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukin-21 Receptor alpha Subunit/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/etiology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Receptors, Interleukin-21/metabolism , Receptors, Interleukin-21/genetics
11.
Front Microbiol ; 15: 1377726, 2024.
Article En | MEDLINE | ID: mdl-38812677

The gene family of thaumatin-like proteins (TLPs) plays a crucial role in the adaptation of organisms to environmental stresses. In recent years, fungal secreted proteins (SP) with inducing disease resistance activity in plants have emerged as important elicitors in the control of fungal diseases. Identifying SPs with inducing disease resistance activity and studying their mechanisms are crucial for controlling sheath blight. In the present study, 10 proteins containing the thaumatin-like domain were identified in strain AG4-JY of Rhizoctonia solani and eight of the 10 proteins had signal peptides. Analysis of the TLP genes of the 10 different anastomosis groups (AGs) showed that the evolutionary relationship of the TLP gene was consistent with that between different AGs of R. solani. Furthermore, it was found that RsTLP3, RsTLP9 and RsTLP10 were regarded as secreted proteins for their signaling peptides exhibited secretory activity. Prokaryotic expression and enzyme activity analysis revealed that the three secreted proteins possess glycoside hydrolase activity, suggesting they belong to the TLP family. Additionally, spraying the crude enzyme solution of the three TLP proteins could enhance maize resistance to sheath blight. Further analysis showed that genes associated with the salicylic acid and ethylene pathways were up-regulated following RsTLP3 application. The results indicated that RsTLP3 had a good application prospect in biological control.

12.
Plants (Basel) ; 13(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38674487

Floral bud growth influences seed yield and quality; however, the molecular mechanism underlying the development of floral buds in alfalfa (Medicago sativa) is still unclear. Here, we comprehensively analyzed the transcriptome and targeted metabolome across the early, mid, and late bud developmental stages (D1, D2, and D3) in alfalfa. The metabolomic results revealed that gibberellin (GA), auxin (IAA), cytokinin (CK), and jasmonic acid (JA) might play an essential role in the developmental stages of floral bud in alfalfa. Moreover, we identified some key genes associated with GA, IAA, CK, and JA biosynthesis, including CPS, KS, GA20ox, GA3ox, GA2ox, YUCCA6, amid, ALDH, IPT, CYP735A, LOX, AOC, OPR, MFP2, and JMT. Additionally, many candidate genes were detected in the GA, IAA, CK, and JA signaling pathways, including GID1, DELLA, TF, AUX1, AUX/IAA, ARF, GH3, SAUR, AHP, B-ARR, A-ARR, JAR1, JAZ, and MYC2. Furthermore, some TFs related to flower growth were screened in three groups, such as AP2/ERF-ERF, MYB, MADS-M-type, bHLH, NAC, WRKY, HSF, and LFY. The findings of this study revealed the potential mechanism of floral bud differentiation and development in alfalfa and established a theoretical foundation for improving the seed yield of alfalfa.

13.
Immunotherapy ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578121

Aim: The study aimed to assess the value of pretreatment peripheral blood neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), pan-immune-inflammation value (PIV) and systemic immune-inflammation index (SII) for predicting immunotherapy prognosis and efficacy in advanced gastric cancer (GC). Methods: A total of 84 advanced GC patients received immunotherapy were retrospectively collected. The optimal cut-off values were determined by receiver operating characteristic curves. The univariate and multivariate analysis investigated the effects of NLR, PLR, PIV and SII on patients prognosis. Results: NLR, PLR, PIV and SII had predictive value of efficacy. NLR ≥3.65 was an independent risk factor for worse outcomes. Conclusion: NLR, PLR, PIV and SII have predictive value of efficacy and NLR ≥3.65 suggests a poor prognosis following immunotherapy in advanced GC.


Immunotherapy can make gastric cancer patients live longer. However, not all patients live longer. We need simple, inexpensive and effective indicators to find patients who can live longer with immunotherapy. Routine blood test is common in our daily lives. Previous studies reported that some indicators in routine blood test can predict the prognosis and efficacy of surgery in gastric cancer patients. But it is not clear in immunotherapy for advanced gastric cancer patients. In our trial, we found that some indicators in routine blood test can help predict the effect of immunotherapy in patients with advanced gastric cancer and screen which patients will live longer with immunotherapy.

14.
J Exp Bot ; 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602261

ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the key regulator of abscisic acid (ABA) signaling pathway, plays a fundamental role in seed germination and postgerminative development. However, the detailed molecular mechanism underlying the repression function of ABI5 in these processes remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein RACK1 is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype was rescued by the mutation of ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 could also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors for CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently turning down ABA signaling for seed germination and postgerminative growth. On the other hand, a series of molecular analyses demonstrated that ABI5 could bind with the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signaling for acute seed germination and early plant development.

15.
Environ Microbiome ; 19(1): 22, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589941

BACKGROUND: Most researches on sponge holobionts focus primarily on symbiotic microbes, yet data at the level of the sponge hologenome are still relatively scarce. Understanding of the sponge host and its microbial gene expression profiles and the host-microbes interplay in different niches represents a key aspect of sponge hologenome. Using the Hawaiian demosponge Mycale grandis in different niches as a model, i.e. on rocks, on the surface of coral Porites compressa, under alga Gracilaria salicornia, we compared the bacterial and fungal community structure, functional gene diversity, expression pattern and the host transcriptome by integrating open-format (deep sequencing) and closed-format (GeoChip microarray) high-throughput techniques. RESULTS: Little inter-niche variation in bacterial and fungal phylogenetic diversity was detected for M. grandis in different niches, but a clear niche-dependent variability in the functional gene diversity and expression pattern of M. grandis host and its symbiotic microbiota was uncovered by GeoChip microarray and transcriptome analyses. Particularly, sponge host genes related to innate immunity and microbial recognition showed a strong correlation with the microbial symbionts' functional gene diversity and transcriptional richness in different niches. The cross-niche variability with respect to the symbiont functional gene diversity and the transcriptional richness of M. grandis holobiont putatively reflects the interplay of niche-specific selective pressure and the symbiont functional diversity. CONCLUSIONS: Niche-dependent gene expression profiles of M. grandis hologenome and the host-microbes interplay were suggested though little inter-niche variation in bacterial and fungal diversity was detected, particularly the sponge innate immunity was found to be closely related to the symbiotic microbes. Altogether, these findings provide novel insights into the black box of one sponge holobiont in different niches at the hologenome level.

16.
Polymers (Basel) ; 16(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38675096

The polar sulfonate groups in cationic dyeable polyester (CDP) lead to complex crystallization behavior, affecting CDP production's stability. In this study, cationic dyeable polyesters (CDP) with different sulfonate group contents were prepared via one-step feeding of sodium isophthalic acid-5-sulfonate (SIPA), terephthalic acid (PTA), and ethylene glycol (EG). The non-isothermal crystallization behavior of these copolyesters was analyzed by differential scanning calorimetry (DSC). Results show that the crystallization temperature of the sample shifts to lower values with the increase in SIPA content. The relaxation behavior of the molecular chain is enhanced due to the ionic aggregation effect of sulfonate groups in CDP. Therefore, at low cooling rates (2.5 °C/min and 5 °C/min), some molecular chain segments in CDP are still too late to orderly stack into the lattice, forming metastable crystals, and melting double peaks appear on the melting curve after crystallization. When the cooling rate increases (10-20 °C/min), the limited region of sulfonate aggregation in CDP increases, resulting in more random chain segments, and a cold crystallization peak appears on the melting curve after crystallization. The non-isothermal crystallization behavior of all samples was fitted and analyzed by the Jeziorny equation, Ozawa equation, and Mo equation. The results indicate that the nucleation density and nucleation growth rate of CDP decrease with the increase in SIPA content. Meanwhile, analysis of the Kissinger equation reveals that the activation energy of non-isothermal crystallization decreases gradually with the increase in SIPA content, and the addition of SIPA makes CDP crystallization more difficult.

17.
Front Plant Sci ; 15: 1294895, 2024.
Article En | MEDLINE | ID: mdl-38645388

Livestock presence impacts plant biodiversity (species richness) in grassland ecosystems, yet extent and direction of grazing impacts on biodiversity vary greatly across inter-annual periods. In this study, an 8-year (2014-2021) grazing gradient experiment with sheep was conducted in a semi-arid grassland to investigate the impact of grazing under different precipitation variability on biodiversity. The results suggest no direct impact of grazing on species richness in semi-arid Stipa grassland. However, increased grazing indirectly enhanced species richness by elevating community dominance (increasing the sheltering effect of Stipa grass). Importantly, intensified grazing also regulates excessive community biomass resulting from increased inter-annual wetness (SPEI), amplifying the positive influence of annual humidity index on species richness. Lastly, we emphasize that, in water-constrained grassland ecosystems, intra-annual precipitation variability (PCI) was the most crucial factor driving species richness. Therefore, the water-heat synchrony during the growing season may alleviate physiological constraints on plants, significantly enhancing species richness as a result of multifactorial interactions. Our study provides strong evidence for how to regulate grazing intensity to increase biodiversity under future variable climate patterns. We suggest adapting grazing intensity according to local climate variability to achieve grassland biodiversity conservation.

18.
Sci Adv ; 10(17): eadk4080, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657077

Using aqueous two-phase systems (ATPSs) for three-dimensional (3D) printed complex structures has attracted considerable attention in the field of biomedicine. In this study, we present an unusual approach to constructing reconfigurable 3D printed structures within an aqueous environment. Inspired by biological systems, we introduce both specific and nonspecific interactions to anchor functionalized nanoparticles to the water-water interface, thereby imparting adaptive dual locks of structural integrity and permeability to the 3D printed liquid structures. Using state-of-the-art in situ liquid-liquid interfacial atomic force microscopy imaging, we successfully demonstrate various morphologies of interfacial films formed at the ATPS interface. In addition, by incorporating d-glucose or sodium alginate into the systems, the dual locks can be easily manipulated. Our study paves a pathway for 3D printing multiresponsive all-aqueous systems with controllable structures and permeability, showing promising implications for the development of smart drug delivery systems and in vivo reactions.

19.
RSC Adv ; 14(20): 13801-13807, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38681838

Near-infrared red (NIR) fluorescence imaging guide phototherapeutic therapy (PDT) has the advantages of deep tissue penetration, real-time monitoring of drug treatment and disease, little damage to normal tissue, low cytotoxicity and almost no side effects, and thus, it is attracting increasing research attention and is expected to show promising potential for clinical tumor treatment. The photosensitizer (PS), light source and oxygen are the three basic and important factors to construct PDT technology, and highly efficient PSs are still being passionately pursued because they determine the PDT efficiency. Ideal PSs should have properties such as good biocompatibility, deep tissue penetration, and highly efficient reactive oxygen species (ROS) generation despite the hypoxic environment. Therefore, pure organic type I PSs with NIR fluorescence have been receiving increasing attention due to their deep penetration and hypoxia resistance. However, reported NIR-active type I PSs usually require complex synthetic procedures, which presents a challenge for mass production. In this research work, based on the molecular design ideas of introducing the heavy atom effect and intramolecular charge transfer, we prepared three NIR-active type I PSs (TNZ, TNZBr, and TNZCHO) using a very simple method with one or two synthetic steps. Clear characterizations of photophysical properties, ROS performance tests, and fluorescent imaging of human umbilical vein endothelial (HUVE) cells and PDT treatment of HepG2 cells were carried out. The results revealed that the heavy atom and intramolecular charge transfer (ICT) effects could obviously enhance the ROS efficiency, and both PSs produce only type I ROS without any type II ROS (1O2) generation. The good NIR fluorescence brightness and type I ROS efficiency ensure satisfactory bioimaging and PDT outcomes. This research provides the possibility of preparing NIR-active type I PSs via mass production.

20.
J Integr Plant Biol ; 66(5): 956-972, 2024 May.
Article En | MEDLINE | ID: mdl-38558526

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Receptors for Activated C Kinase , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Hypocotyl/growth & development , Hypocotyl/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Gene Expression Regulation, Plant/radiation effects , Light , Signal Transduction , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Light Signal Transduction , Phosphorylation
...