Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Microorganisms ; 12(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38792846

Both pandemic and seasonal influenza are major health concerns, causing significant mortality and morbidity. Current influenza drugs primarily target viral neuraminidase and RNA polymerase, which are prone to drug resistance. Polyoxometalates (POMs) are metal cation clusters bridged by oxide anions. They have exhibited potent anti-tumor, antiviral, and antibacterial effects. They have remarkable activity against various DNA and RNA viruses, including human immunodeficiency virus, herpes simplex virus, hepatitis B and C viruses, dengue virus, and influenza virus. In this study, we have identified sodium polyoxotungstate (POM-1) from an ion channel inhibitor library. In vitro, POM-1 has been demonstrated to have potent antiviral activity against H1N1, H3N2, and oseltamivir-resistant H1N1 strains. POM-1 can cause virion aggregation during adsorption, as well as endocytosis. However, the aggregation is reversible; it does not interfere with virus adsorption and endocytosis. Our results suggest that POM-1 exerts its antiviral activity by inhibiting the nuclear import of viral ribonucleoprotein (vRNP). This distinct mechanism of action, combined with its wide range of efficacy, positions POM-1 as a promising therapeutic candidate for influenza treatment and warrants further investigation.

2.
Antimicrob Agents Chemother ; 68(4): e0135023, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38470034

Influenza remains a significant threat to public health. In severe cases, excessive inflammation can lead to severe pneumonia or acute respiratory distress syndrome, contributing to patient morbidity and mortality. While antivirals can be effective if administered early, current anti-inflammatory drugs have limited success in treating severe cases. Therefore, discovering new anti-inflammatory agents to inhibit influenza-related inflammatory diseases is crucial. Herein, we screened a drug library with known targets using a human monocyte U937 infected with the influenza virus to identify novel anti-inflammatory agents. We also evaluated the anti-inflammatory effects of the hit compounds in an influenza mouse model. Our research revealed that JAK inhibitors exhibited a higher hit rate and more potent inhibition effect than inhibitors targeting other drug targets in vitro. Of the 22 JAK inhibitors tested, 15 exhibited robust anti-inflammatory activity against influenza virus infection in vitro. Subsequently, we evaluated the efficacy of 10 JAK inhibitors using an influenza mouse model and observed that seven provided protection ranging from 40% to 70% against lethal influenza virus infection. We selected oclacitinib as a representative compound for an extensive study to further investigate the in vivo therapeutic potential of JAK inhibitors for severe influenza-associated inflammation. Our results revealed that oclacitinib effectively suppressed neutrophil and macrophage infiltration, reduced pro-inflammatory cytokine production, and ultimately mitigated lung injury in mice infected with lethal influenza virus without impacting viral titer. These findings suggest that JAK inhibitors can modulate immune responses to influenza virus infection and may serve as potential treatments for influenza.IMPORTANCEAntivirals exhibit limited efficacy in treating severe influenza when not administered promptly during the infection. Current steroidal and nonsteroidal anti-inflammatory drugs demonstrate restricted effectiveness against severe influenza or are associated with significant side effects. Therefore, there is an urgent need for novel anti-inflammatory agents that possess high potency and minimal adverse reactions. In this study, 15 JAK inhibitors were identified through a screening process based on their anti-inflammatory activity against influenza virus infection in vitro. Remarkably, 7 of the 10 selected inhibitors exhibited protective effects against lethal influenza virus infection in mice, thereby highlighting the potential therapeutic value of JAK inhibitors for treating influenza.


Communicable Diseases , Influenza, Human , Janus Kinase Inhibitors , Orthomyxoviridae Infections , Orthomyxoviridae , Pyrimidines , Sulfonamides , Humans , Animals , Mice , Influenza, Human/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Cytokines , Orthomyxoviridae Infections/drug therapy , Inflammation/drug therapy , Communicable Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Lung
3.
Viruses ; 15(8)2023 07 28.
Article En | MEDLINE | ID: mdl-37631985

Herpes simplex virus type 1 (HSV-1) infections are prevalent illnesses that can cause mucocutaneous ulcerative disease, keratitis, and genital herpes. In patients with compromised immune systems, the infection can lead to serious problems, such as encephalitis. Additionally, neonatal infections can cause brain problems and even death. Current first-line antiviral drugs are nucleoside analog inhibitors that target viral polymerase, and resistant strains have emerged. As a result, new drugs with distinct action modes are needed. Recent research indicates that cyclin-dependent kinases (CDKs) are prospective antiviral targets. Thus, CDK inhibitors may be effective antiviral agents against HSV-1 infection. In this study, we examined a panel of CDK inhibitors that target CDKs in the present study. BMS-265246 (BMS), a CDK 1/2 inhibitor, was found to effectively limit HSV-1 multiplication in Vero, HepG2, and Hela cells. A mechanism of action study suggested that BMS inhibits the early stages of viral replication when added early in the viral infection. The suppression of multiple steps in viral replication by BMS was revealed when HSV-1 infected cells were treated at different time periods in the viral life cycle. Our results suggest that BMS is a potent anti-HSV-1 agent and unique in that it may interfere with multiple steps in HSV-1 replication.


Herpes Simplex , Herpesvirus 1, Human , Infant, Newborn , Humans , HeLa Cells , Protein Kinase Inhibitors/pharmacology , Herpes Simplex/drug therapy , Antiviral Agents/pharmacology , Cyclin-Dependent Kinases
4.
Tissue Cell ; 76: 101796, 2022 Jun.
Article En | MEDLINE | ID: mdl-35429908

The development of three-dimensional (3D) in vitro model to recapitulate the in vivo tumor tissue is essential for studying tumor biology, discovering anti-cancer drugs, and evaluating anti-cancer drug efficacy. However, most of the previous models lack the involvement of vascular barrier. Here, we proposed an in vitro 3D cocultured tumor-vascular barrier model by the combination of alginate hydrogels beads and Transwell system. PC-3 cells and NIH/3T3 cells were encapsulated in alginate hydrogel beads, which were cultured in the bottom chamber of Transwell, while human umbilical vein endothelial cells (HUVECs) were cultured on the porous membrane in the upper chamber to form vascular barrier. The effect of the concentration of alginate sodium on the morphology, diameter and swelling ratio of the beads was studied. The alginate sodium content and cell seeding density were further optimized according to cell proliferation ability. The formation of endothelial barrier was verified by immunostaining with tight junction protein VE-cadherin and transendothelial electrical resistance (TEER) monitoring. Finally, the drug response of 3D cocultured tumor-vascular barrier model to curcumin was evaluated. Compared with two-dimensional (2D) coculture model and 3D coculture spheroid model, 3D tumor-vascular barrier model showed the highest activity of cancer cells and the strongest drug resistance. The developed 3D cocultured tumor-vascular barrier model possesses great potential to be applied for in vitro evaluation of anti-tumor drugs.


Alginates , Antineoplastic Agents , Alginates/pharmacology , Animals , Antineoplastic Agents/pharmacology , Coculture Techniques , Human Umbilical Vein Endothelial Cells , Humans , Hydrogels , Mice , Sodium
...