Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Anim Nutr ; 17: 347-357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800741

RESUMEN

For the agroecosystems of the dairy cow industry, dietary carbohydrate (starch, neutral detergent fiber [NDF]) and fat could directly affect rumen methane emissions and host energy utilization. However, the relationships among diet, lactation performance, and methane emissions need to be further determined to assist dairy farms to adjust diet formulations and feeding strategies for environmental and production management. A meta-analysis was conducted in the current study to explore quantitative patterns of dietary fat and carbohydrate at different levels in balancing lactation performance and environment sustainability of dairy cows, and to establish a methane emission prediction model using the artificial neural network (ANN) model. The results showed that the regression relationship between dietary fat, carbohydrate and methane emissions could be shown by the following models: methane = 106.78 + (14.86 × DMI), R2 = 0.80; methane = 443.17 - (46.41 × starch/NDF), R2 = 0.76; and methane = 388.91 + (31.40 × fat) - (5.42 × fat2), R2 = 0.80. The regression relationships between dietary fat, carbohydrate and lactation performance could be shown by the following models: milk fat yield = 1.08 + (0.43 × starch/NDF) - [0.34 × (starch/NDF)2], R2 = 0.79; milk protein yield = 0.68 + (0.15 × fat) - (0.016 × fat2), R2 = 0.82. In the structural equation model, we found that when formulating dietary carbohydrates and fats, it was necessary to balance the relationship between methane emissions and lactation performance. Specifically, dietary starch/NDF was lower than 0.63 (extremum point) and dietary fat was between 2.89% and 4.69% (extremum point), it could ensure that the aim of methane emission reduction (methane emissions decrease with increasing dietary starch/NDF and fat) was achieved without losing lactation performance of dairy cows (lactation performance increase with increasing dietary starch/NDF and fat). Finally, we established the ANN model to predict methane emissions (training set: R2 = 0.62; validation set: R2 = 0.61).

2.
Clin Epigenetics ; 16(1): 72, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812044

RESUMEN

Lactic acid, traditionally considered as a metabolic waste product arising from glycolysis, has undergone a resurgence in scientific interest since the discovery of the Warburg effect in tumor cells. Numerous studies have proved that lactic acid could promote angiogenesis and impair the function of immune cells within tumor microenvironments. Nevertheless, the precise molecular mechanisms governing these biological functions remain inadequately understood. Recently, lactic acid has been found to induce a posttranslational modification, lactylation, that may offer insight into lactic acid's non-metabolic functions. Notably, the posttranslational modification of proteins by lactylation has emerged as a crucial mechanism by which lactate regulates cellular processes. This article provides an overview of the discovery of lactate acidification, outlines the potential "writers" and "erasers" responsible for protein lactylation, presents an overview of protein lactylation patterns across different organisms, and discusses the diverse physiological roles of lactylation. Besides, the article highlights the latest research progress concerning the regulatory functions of protein lactylation in pathological processes and underscores its scientific significance for future investigations.


Asunto(s)
Procesamiento Proteico-Postraduccional , Humanos , Ácido Láctico/metabolismo , Animales , Histonas/metabolismo , Histonas/genética , Código de Histonas/genética , Neoplasias/genética , Neoplasias/metabolismo , Epigénesis Genética/genética
3.
Cerebrovasc Dis Extra ; 14(1): 46-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648746

RESUMEN

INTRODUCTION: Acute ischemic stroke (AIS) stands as a leading cause of death and disability globally. This study aimed to investigate the risk factors and relevance linked with AIS in patients undergoing maintenance hemodialysis (MHD) and to create and validate nomogram models. METHODS: We examined the medical records of 314 patients with stage 5 chronic kidney disease (CKD 5) undergoing MHD, who sought neurology outpatient department consultation for suspected AIS symptoms between January 2018 and December 2023. These 314 patients were randomly divided into the training cohort (n = 222) and validation cohort (n = 92). The least absolute shrinkage selection operator (LASSO) regression model was employed for optimal feature selection in the AIS risk model. Subsequently, multivariable logistic regression analysis was used to construct a predictive model incorporating the features selected through LASSO. This predictive model's performance was assessed using the C-index and the area under the receiver operating characteristic curve (AUC). Additionally, calibration and clinical utility were evaluated through calibration plots and decision curve analysis (DCA). The model's internal validation was conducted using the validation cohort. RESULTS: Predictors integrated into the prediction nomogram encompassed cardiovascular disease (CVD) (odds ratio [OR] 7.95, 95% confidence interval [CI] 2.400-29.979), smoking (OR 5.7, 95% CI: 1.661-21.955), dialysis time (OR: 5.91, 95% CI: 5.866-29.979), low-density lipoprotein (OR: 2.99, 95% CI: 0.751-13.007), and fibrin degradation products (OR: 5.47, 95% CI: 1.563-23.162). The model exhibited robust discrimination, with a C-index of 0.877 and 0.915 in the internal training and validation cohorts, respectively. The AUC for the training set was 0.857, and a similar AUC of 0.905 was achieved in the validation cohort. DCA demonstrated a positive net benefit within a threshold risk range of 2-96%. CONCLUSION: The proposed nomogram effectively identifies MHD patients at high risk of AIS at an early stage. This model holds the potential to aid clinicians in making preventive recommendations.


Asunto(s)
Accidente Cerebrovascular Isquémico , Nomogramas , Valor Predictivo de las Pruebas , Diálisis Renal , Humanos , Masculino , Femenino , Diálisis Renal/efectos adversos , Medición de Riesgo , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Persona de Mediana Edad , Anciano , Reproducibilidad de los Resultados , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Pronóstico , Técnicas de Apoyo para la Decisión
4.
Foods ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540889

RESUMEN

The present study employed Hunan local Tuqu for fermentation and investigated the physicochemical properties, microbial community composition, and volatile flavor compounds of the fermented grains, as well as the correlation between the physicochemical indicators and the microbial community. The findings reveal that the activities of α-amylase and glucoamylase were highest during the initial stages of the fermentation process. The acid protease activity increased to 30.6 U/g on the second day and then decreased. Cellulose and lipase activities both showed an increasing trend. The moisture content increased sharply to 73.41% and then remained relatively stable. The acidity was highest on the eighth day. Fifty genera of bacteria and twenty-two genera of fungi were detected. Lactobacillus was dominant among bacteria, and Saccharomyces was dominant among fungi. A correlation analysis showed that there were positive correlations between moisture, acidity, cellulose, lipase activities and Lactobacillus, and there were positive correlations between moisture content, acidity, cellulase activity, acidic protease activity and Saccharomyces. A total of 46 volatile flavor compounds were detected, of which 6 alcohols and 14 esters constituted the major portion, and 9 key flavor compounds with an ROAV > 1 were identified throughout the fermentation process. Isoamyl acetate had the highest ROAV and made the greatest contribution to the flavor.

5.
Epilepsy Behav ; 152: 109653, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277848

RESUMEN

OBJECTIVE: This study aimed to evaluate the efficacy and safety of six new antiseizure medications (ASMs) for adjunctive treatment in adult patients with focal epilepsy and adolescents with Dravet syndrome (DS), Lennox-Gastaut syndrome (LGS), or tuberous sclerosis complex (TSC). METHODS: A comprehensive literature search was performed using PubMed, Medline, Embase, and Cochrane library databases from inception to October 13, 2023. We included published studies for a systematic review and a network meta-analysis (NMA). The efficacy and safety were reported in terms of a 50% response rate and dropout rate along with serious adverse events (SAEs). The outcomes were ranked with the surface under the cumulative ranking curve (SUCRA). RESULTS: Twenty eligible trials with 5516 patients and 21 interventions, including placebo, contributed to the analysis. Included ASMs were brivaracetam (BRV), cenobamate (CBM), cannabidiol (CBD), fenfluramine (FFM), everolimus (ELM), and soticlestat (SLT). The six new ASMs were compared in four different epilepsy subtypes. In focal epilepsy treatment, BRV seemed to be safe [vs placebo, risk ratio (RR) = 0.69, 95 % confidence interval (CI): 0.25-1.91] and effective (vs placebo, RR = 2.18, 95 % CI: 1.25-3.81). In treating focal epilepsy, CBM 300 mg was more effective at a 50 % response rate (SUCRA 91.8 %) compared with BRV and CBD. However, with the increase in dosage, more SAEs (SUCRA 85.6 %) appeared compared with other ASMs. CBD had good efficacy on LGS (SUCRA 88.4) and DS (SUCRA 66.2), but the effect on adult focal epilepsy was not better than that of placebo [vs placebo, RR = 0.83 (0.36-1.93)]. The NMA indicated that the likelihood of the most appropriate intervention (SUCRA 91.2 %) with minimum side effects(SUCRA 12.5 %)for the DS was FFM. Compared with CBD, high exposure to ELM demonstrated a more effective treatment of TSC (SUCRA 89.7 %). More high-quality SLT studies are needed to further evaluate the efficacy and safety. The comparison-adjusted funnel plots of annualized relapse rate and side effects in the included studies revealed no significant funnel plot asymmetry. CONCLUSIONS: This NMA indicated that the most effective treatment strategy for focal epilepsy, DS, Lennox-Gastaut syndrome, and TSC, respectively, included CBM 300 mg, FFM, CBD, and ELM. However, the aforementioned findings need further confirmation.


Asunto(s)
Cannabidiol , Carbamatos , Clorofenoles , Epilepsias Mioclónicas , Epilepsias Parciales , Epilepsia , Síndrome de Lennox-Gastaut , Tetrazoles , Adulto , Adolescente , Humanos , Síndrome de Lennox-Gastaut/tratamiento farmacológico , Metaanálisis en Red , Cannabidiol/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Parciales/tratamiento farmacológico , Epilepsias Parciales/inducido químicamente , Everolimus/uso terapéutico , Anticonvulsivantes/efectos adversos
6.
Food Chem X ; 19: 100811, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780291

RESUMEN

In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, ß-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.

7.
Foods ; 12(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761186

RESUMEN

Canned bamboo shoots in clear water could produce a unique flavor through bacterial diversity via the fermentation process. Weissella, Streptococcus, Leuconostoc, Acinetobacter, Lactococcus and Lactobacillus were the main microorganisms. Tyrosine was the most abundant free amino acid (FAA), which had a negative correlation with Lactococcus. Ten kinds of flavor substances, such as 3-methyl-1-butanol, acetic acid, 2-phenylethyl ester, benzene acetaldehyde, benzoic acid and ethyl ester, were important influential factors in the flavor of fermented bamboo shoots. Through the verification test of tyrosine and phenylalanine decarboxylase, it was found that Lactococcus lactis TJJ2 could decompose tyrosine and phenylalanine to produce benzaldehyde and benzene acetaldehyde, which provided the fermented bamboo shoots with a grassy aroma.

8.
Foods ; 12(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37761210

RESUMEN

Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.

9.
Microbiome ; 11(1): 215, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773207

RESUMEN

BACKGROUND: The increased growth rate of young animals can lead to higher lactation performance in adult goats; however, the effects of the ruminal microbiome on the growth of young goats, and the contribution of the early-life rumen microbiome to lifelong growth and lactation performance in goats has not yet been well defined. Hence, this study assessed the rumen microbiome in young goats with different average daily gains (ADG) and evaluated its contribution to growth and lactation performance during the first lactation period. RESULTS: Based on monitoring of a cohort of 99 goats from youth to first lactation, the 15 highest ADG (HADG) goats and 15 lowest ADG (LADG) goats were subjected to rumen fluid microbiome and metabolome profiling. The comparison of the rumen metagenome of HADG and LADG goats revealed that ruminal carbohydrate metabolism and amino acid metabolism function were enhanced in HADG goats, suggesting that the rumen fluid microbiome of HADG goats has higher feed fermentation ability. Co-occurrence network and correlation analysis revealed that Streptococcus, Candidatus Saccharimonans, and Succinivibrionaceae UCG-001 were significantly positively correlated with young goats' growth rates and some HADG-enriched carbohydrate and protein metabolites, such as propionate, butyrate, maltoriose, and amino acids, while several genera and species of Prevotella and Methanogens exhibited a negative relationship with young goats' growth rates and correlated with LADG-enriched metabolites, such as rumen acetate as well as methane. Additionally, some functional keystone bacterial taxa, such as Prevotella, in the rumen of young goats were significantly correlated with the same taxa in the rumen of adult lactation goats. Prevotella also enriched the rumen of LADG lactating goats and had a negative effect on rumen fermentation efficiency in lactating goats. Additional analysis using random forest machine learning showed that rumen fluid microbiota and their metabolites of young goats, such as Prevotellaceae UCG-003, acetate to propionate ratio could be potential microbial markers that can potentially classify high or low ADG goats with an accuracy of prediction of > 81.3%. Similarly, the abundance of Streptococcus in the rumen of young goats could be predictive of milk yield in adult goats with high accuracy (area under the curve 91.7%). CONCLUSIONS: This study identified the keystone bacterial taxa that influence carbohydrate and amino acid metabolic functions and shape the rumen fluid microbiota in the rumen of adult animals. Keystone bacteria and their effects on rumen fluid microbiota and metabolome composition during early life can lead to higher lactation performance in adult ruminants. These findings suggest that the rumen microbiome together with their metabolites in young ruminants have long-term effect on feed efficiency and animal performance. The fundamental knowledge may allow us to develop advanced methods to manipulate the rumen microbiome and improve production efficiency of ruminants. Video Abstract.


Asunto(s)
Dieta , Lactancia , Humanos , Animales , Femenino , Adolescente , Dieta/veterinaria , Propionatos/metabolismo , Multiómica , Bacterias/genética , Metaboloma , Cabras , Carbohidratos , Rumen/microbiología , Fermentación , Alimentación Animal/análisis
10.
Nat Commun ; 14(1): 5254, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644066

RESUMEN

The diverse rumen virome can modulate the rumen microbiome, but it remains largely unexplored. Here, we mine 975 published rumen metagenomes for viral sequences, create a global rumen virome database (RVD), and analyze the rumen virome for diversity, virus-host linkages, and potential roles in affecting rumen functions. Containing 397,180 species-level viral operational taxonomic units (vOTUs), RVD substantially increases the detection rate of rumen viruses from metagenomes compared with IMG/VR V3. Most of the classified vOTUs belong to Caudovirales, differing from those found in the human gut. The rumen virome is predicted to infect the core rumen microbiome, including fiber degraders and methanogens, carries diverse auxiliary metabolic genes, and thus likely impacts the rumen ecosystem in both a top-down and a bottom-up manner. RVD and the findings provide useful resources and a baseline framework for future research to investigate how viruses may impact the rumen ecosystem and digestive physiology.


Asunto(s)
Caudovirales , Microbiota , Humanos , Animales , Viroma , Rumen , Bases de Datos Factuales
11.
Foods ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37238809

RESUMEN

Yellow glutinous rice wine is a traditional Chinese beverage created by soaking, boiling, and fermenting glutinous rice. The majority of current studies on the flavor of yellow glutinous rice wine are based on instrumental analysis, with sensory analysis being overlooked. In this study, 36 volatile chemicals in the fermentation process of yellow wine were annotated by GC-MS and then an OPLS-DA model was built to screen out 13 distinctive substances (VIP > 1, p < 0.01). The relative odor activity value (ROAV) was calculated using the threshold values of these chemicals and 10 substances, including alcohols, esters, and aldehydes, were found as key contributors to the overall flavor of yellow wine. Following that, consumers quantified the sensory descriptors of yellow wine using rate-all-that-apply (RATA), and correspondence analysis revealed three groups of characteristic flavors and odors. Alcohols and esters were found to be key producers of flowery and fruity scents in yellow wine, according to correlation analysis. We discovered two alcohols that are rarely found in yellow wine: [R,R]-2,3-butanediol and 1-phenylethanol. The former was found to be favorably connected with wine scent and pungent odor, and its specific effect on flavor should be researched further.

12.
ISME J ; 17(7): 1128-1140, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169869

RESUMEN

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Asunto(s)
Cilióforos , Rumen , Animales , Bovinos , Rumen/microbiología , Proteómica , Cilióforos/genética , Cilióforos/metabolismo , Rumiantes/metabolismo , Almidón/metabolismo , Metano/metabolismo
13.
Nutrients ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049564

RESUMEN

To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Animales , Glucosa/metabolismo , Caenorhabditis elegans/metabolismo , Verrucomicrobia , Lípidos
14.
Foods ; 12(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107423

RESUMEN

The probiotic role of lactic acid bacteria (LAB) in regulating intestinal microbiota to promote human health has been widely reported. However, the types and quantities of probiotics used in practice are still limited. Therefore, isolating and screening LAB with potential probiotic functions from various habitats has become a hot topic. In this study, 104 strains of LAB were isolated from and identified in traditionally fermented vegetables, fresh milk, healthy infant feces, and other environments. The antibacterial properties-resistance to acid, bile salts, and digestive enzymes-and adhesion ability of the strains were determined, and the biological safety of LAB with better performance was studied. Three LAB with good comprehensive performance were obtained. These bacteria had broad-spectrum antibacterial properties and good acid resistance and adhesion ability. They exhibited some tolerance to pig bile salt, pepsin, and trypsin and showed no hemolysis. They were sensitive to the selected antibiotics, which met the required characteristics and safety evaluation criteria for probiotics. An in vitro fermentation experiment and milk fermentation performance test of Lactobacillus rhamnosus (L. rhamnosus) M3 (1) were carried out to study its effect on the intestinal flora and fermentation performance in patients with inflammatory bowel disease (IBD). Studies have shown that this strain can effectively inhibit the growth of harmful microorganisms and produce a classic, pleasant flavor. It has probiotic potential and is expected to be used as a microecological agent to regulate intestinal flora and promote intestinal health. It can also be used as an auxiliary starter to enhance the probiotic value of fermented milk.

15.
Foods ; 11(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36429198

RESUMEN

Chewing areca nuts is a popular hobby in the Asian region, and areca nuts are rich in polyphenols, although some alkaloids are included. In this study, we explored the antioxidant activity of areca nut polyphenols (ANP) in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. The results revealed that ANP reduced the level of reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells and enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). RNA-seq analysis showed that ANP down-regulated the transcription of genes related to the cancer pathway at 160 µg/mL, and the inflammatory pathway as well as viral infection pathway at 320 µg/mL. The cellular signaling analysis further revealed that the expressions of these genes were regulated by the mitogen-activated protein kinase (MAPK) pathway, and ANP downregulated the activation of the MAPK signaling pathway stimulated by LPS. Collectively, our findings showed that ANP inhibited the MAPK pathway and activated the Nrf2/HO-1 antioxidant pathways to reduce ROS generation induced by LPS.

16.
Curr Res Food Sci ; 5: 1788-1807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268133

RESUMEN

Although aroma is one of the most essential factors determining the quality of Fu brick tea (FBT), the aroma profiles of FBTs from different manufacturing areas are rarely investigated. The aroma profiles of FBTs manufactured in five typical provinces of China were comprehensively analyzed on the basis of headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), sensory evaluation, odor activity value (OAV), and relative odor activity value (ROAV). HS-GC-IMS and HS-SPME-GC-MS identified 63 and 93 volatile organic compounds (VOCs), respectively. Multivariate statistical analysis indicated that the FBTs from different production regions had remarkably varied aromas. HS-SPME-GC-MS revealed that 27 VOCs (OAV >1) contributed to the overall aroma of the samples, of which 15 key differential compounds can effectively distinguish the aroma profiles of different FBTs. FBT from Shaanxi manifested a strong floral and fruity aroma; that from Hunan had a floral, grassy, and pine-woody aroma; that from Guizhou presented a grassy and herbal aroma; that from Guangxi exhibited a sweet, floral, and minty aroma; and that from Zhejiang possessed various fruit flavors and floral fragrance. OAV analysis identified the biomarkers responsible for the variation in the aroma characteristics of diverse FBTs. These biomarkers included linalool, 6-methyl-5-hepten-2-one, α-ionone, hexanal, and ethyl hexanoate. Sensory evaluation demonstrated that the infusion color and aroma of FBT samples from different provinces also greatly varied. Network correlation analysis revealed that Aspergillus and Eurotium were the crucial microorganisms for the metabolism and formation of VOCs. These findings provide new insight into the VOCs and fragrance features of FBTs produced in different regions of China.

17.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234692

RESUMEN

Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid ß-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid ß-oxidation and synthesis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Akkermansia , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Grasos/metabolismo , Hormonas/metabolismo , Humanos , Hidrolasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Triglicéridos/metabolismo
18.
Foods ; 11(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36076800

RESUMEN

Vitis davidii Foex whole seed (VWS) is a by-product during the processing of grape products, which is rich in bioactive compounds that have great potential in the food industry. In this study, the bioactive compounds and antioxidant activity of VWS were determined, and their dynamic changes during in vitro colonic fermentation were also investigated after VWS subjected to in vitro simulated digestion. Results showed that VWS were rich in polyphenols (23.67 ± 0.52 mg GAE/g), flavonoids (13.13 ± 1.22 mg RE/g), and proanthocyanidins (8.36 ± 0.14 mg CE/g). It also had good DPPH and ABTS radical scavenging activity, which reached 82.10% and 76.10% at 1000 µg/mL. The alteration trend of the antioxidant activity during in vitro fermentation for 24 h was consistent with that of the content of bioactive substances, such as polyphenols, with the extension of fermentation time. The bioactive compounds and antioxidant activity showed a trend of increasing and then decreasing, reaching the highest value at 8 h. The high-throughput sequencing analysis of the regulatory effect of VWS on intestinal micro-organisms revealed that VWS influenced intestinal microbiota diversity. The relative abundance of beneficial microbiota, such as Blautia and Parabacteroides, increased by 4.1- and 1.65-fold after 24 h of fermentation compared with that of the control group. It also reduced Escherichia-Shigella by 11.23% and effectively reduced host inflammation, while increasing the contents of acetic acid, propionic acid, and other metabolites. Taken together, these results reveal the value of VWS utilization and provide new insights into the nutritional and microbiota modulation effects of VWS, which could therefore serve as a nutraceutical ingredient in health promotion.

19.
Front Microbiol ; 13: 948617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160207

RESUMEN

Social interaction facilitates the horizontal transmission of the microbiota between different individuals. However, little is known about the level of microbiota transmission in different livestock animals and different digestive tracts. The Hainan black goat and Wuzhishan pig are typical tropical local breeds on Hainan Island in China. Thus, we sampled and analyzed the gut microbiome in Hainan black goats (cecum and rumen) and Wuzhishan pigs (cecum) to study horizontal transmission by rearing them in the same pen (six goats and six pigs) or separate pens (nine goats and nine pigs). De novo assembly and binning recovered 3,262 strain-level and 2,488 species-level metagenome-assembled genomes (MAGs) using ∼1.3 Tb sequencing data. Of these MAGs, 1,856 MAGs were identified as novel strain. Compared with goats living in separate pens, social interaction in the same pen promotes community homogeneity in the rumen microbiome (P < 0.05) and the cecum microbiome (P < 0.05), respectively. Notably, approximately 7.08% (231/3262) of the gut microbial population could transmit during cohousing, 12 strains only in inter-species transmission, versus 190 strains only in intra-species transmission, and 10 strains only in foregut and hindgut transmission. In addition, the social contact group has high transmitted strain abundance, which is correlated with community composition. This study provided a new insight into the influence of social interaction on the animal gut microbiota.

20.
J Agric Food Chem ; 70(38): 12095-12106, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121066

RESUMEN

In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.


Asunto(s)
Metagenoma , Microbiota , Animales , Biomasa , Ácidos Grasos Volátiles/metabolismo , Fermentación , Pectinas/metabolismo , Rumen/metabolismo , Xilanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...