Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Biomed Pharmacother ; 174: 116541, 2024 May.
Article En | MEDLINE | ID: mdl-38565063

BACKGROUND: Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT: The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION: In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE: This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.


Antihypertensive Agents , Drug Liberation , Hypertension , Isoquinolines , Polyethylene Glycols , Animals , Hypertension/drug therapy , Polyethylene Glycols/chemistry , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacokinetics , Male , Isoquinolines/pharmacology , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Rats , Mice , Nanoparticles/chemistry , Cell Line , Nanoparticle Drug Delivery System/chemistry , Rats, Sprague-Dawley , Drug Carriers/chemistry , Blood Pressure/drug effects , Polyesters/chemistry
2.
Drug Des Devel Ther ; 17: 2749-2762, 2023.
Article En | MEDLINE | ID: mdl-37701045

Purpose: This study aimed to investigate the molecular mechanisms of isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), in treating renal interstitial fibrosis (RIF) by using RNA sequencing, KEGG analysis and in vivo experimental approaches. Methods: Spontaneous hypertension rats (SHRs) were randomly assigned into five groups, consisting of SHR, SHR+Isoliensinine-L (2.5 mg/kg/day), SHR+Isoliensinine-M (5 mg/kg/day), SHR+Isoliensinine-H (10 mg/kg/day), and SHR+Valsartan (10 mg/kg/day) groups (n = 6 for each group). A control group of Wistar Kyoto rats (n = 6) was also included. Rats were treated intragastrically with isoliensinine, valsartan, or double-distilled water of equal volume for 10 weeks. To examine the therapeutic impact on hypertensive renal injury, fibrosis, and its underlying mechanisms, multiple techniques were employed, including hematoxylin and eosin staining, Masson trichrome staining, RNA sequencing, gene ontology (GO) function and pathway enrichment analysis and immunohistochemistry. Results: Resultantly, the use of isoliensinine at different concentrations or valsartan showed significant improvement in renal pathological injury in SHRs. RNA sequencing and KEGG analysis uncovered 583 differentially expressed transcripts and pathways enriched in collagen formation and ECM-receptor interaction after treatment with isoliensinine. There was also a reduction in the increase of collagen and upregulation of collagen I & III, TGF-ß1, p-Smad2, and p-Smad3 in the renal tissue of SHRs. Thus, isoliensinine ameliorated renal injury and collagen deposition in hypertensive rats, and inhibiting the activation of the TGF-ß1/Smad2/3 pathway might be one of the underlying mechanisms. Conclusion: This study showed that treatment with isoliensinine effectively reduced the renal injury and fibrosis in SHRs. In addition, isoliensinine inhibited the TGF-ß1/Smad2/3 signaling in-vivo. These findings provided strong evidence for the therapeutic benefits of isoliensinine in combating renal injury and fibrosis.


Kidney Diseases , Transforming Growth Factor beta1 , Rats , Animals , Rats, Inbred SHR , Kidney Diseases/drug therapy , Isoquinolines/pharmacology , Signal Transduction , Fibrosis
3.
Int Immunopharmacol ; 124(Pt A): 110838, 2023 Nov.
Article En | MEDLINE | ID: mdl-37633235

Colorectal cancer (CRC) is a growing concern due to its high morbidity and mortality, and the search for effective and less toxic active substances against inflammatory bowel diseases has been a hot topic in the research and development of drugs against CRC. It is reported that monotropein isolated from the roots of Morinda officinalis, can improve Dextran Sodium Sulfate (DSS)-induced ulcerative colitis in mice, but its therapeutic effects and mechanisms for CRC treatment are still to be investigated. In the present study, we first used molecular docking, BLI, CESTA, and DARTS methods to detest whether monotropein targets VDR proteins. In addition, we used tumor cell conditioned co-culture and four models of macrophage polarisation to investigate the regulation of four macrophage polarisations by monotropein using RT-PCR, IF and western blot. Furthermore, we further validated the target of action of monotropein for the treatment of Azoxymethane (AOM)/DSS induced colitis associated cancer (CAC) using knockout animals. Meanwhile, we further explored the mechanism of action of monotropein in regulating polarisation by detecting JAK/STAT1-related genes and proteins. Molecular docking and biofilm interference techniques showed that monotropein bound to the VDR, and additional results from CESTA and DARTS suggested that VDR proteins are targets of monotropein. Furthermore, in tumor cell conditioned co-cultures or LPS + IFN-γ induced RAW264.7 cells, VDR translocation to the nucleus was reduced, JAK1/STAT1 signaling pathway proteins were up-regulated, and macrophages were polarised towards the M1-type after monotropein intervention. Animal models in which normal VDR or myeloid VDR was knocked out confirmed that JAK1 levels in intestinal tissues were increased after monotropein intervention, macrophages were polarised towards the M1 type, and CAC paracarcinomas were ameliorated. Taken together, the present study concluded that monotropein inhibited colitis-associated cancers through macrophage polarisation regulated by VDR/JAK1/STAT1.

4.
J Ethnopharmacol ; 317: 116768, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37308031

ETHNOPHARMACOLOGICAL RELEVANCE: Liensinine(Lien, C37H42N2O6) is an alkaloid compound from plumula nelumbinis that demonstrates an antihypertensive effect. The protective effects of Lien on target organs during hypertension are still unclear. AIM OF THE STUDY: This study aimed to understand the mechanism of Lien during the treatment of hypertension, with emphasis on vascular protection. MATERIALS AND METHODS: Lien was extracted and isolated from plumula nelumbinis for further study. In vivo model of Ang II-induced hypertension, non-invasive sphygmomanometer was used to detect the blood pressure in and out of the context of Lien intervention. Ultrasound was used to detect the abdominal aorta pulse wave and media thickness of hypertensive mice, and RNA sequencing was used to detect the differential genes and pathways of blood vessels. The intersection of Lien and MAPK protein molecules was detected by molecular interconnecting technique. The pathological conditions of abdominal aorta vessels of mice were observed by HE staining. The expression of PCNA, α-SMA, Collagen Type Ⅰ and Collagen Type Ⅲ proteins were detected by IHC. The collagen expression in the abdominal aorta was detected by Sirius red staining. The MAPK/TGF-ß1/Smad2/3 signaling and the protein expression of PCNA and α-SMA was detected by Western blot. In vitro, MAPK/TGF-ß1/Smad2/3 signaling and the protein expression of PCNA and α-SMA were detected by Western blot, and the expression of α-SMA was detected by immunofluorescence; ELISA was used to detect the effect of ERK/MAPK inhibitor PD98059 on Ang Ⅱ-induced TGF-ß1secrete; and the detection TGF-ß1and α-SMA protein expression by Western blot; Western blot was used to detect the effect of ERK/MAPK stimulant12-O-tetradecanoyl phorbol-13-acetate (TPA) on the protein expression of TGF-ß1 and α-SMA. RESULTS: Lien displayed an antihypertensive effect on Ang Ⅱ-induced hypertension, reducing the pulse wave conduction velocity of the abdominal aorta and the thickness of the abdominal aorta vessel wall, ultimately improving the pathological state of blood vessels. RNA sequencing further indicated that the differential pathways expressed in the abdominal aorta of hypertensive mice were enriched in proliferation-related markers compared with the Control group. The profile of differentially expressed pathways was ultimately reversed by Lien. Particularly, MAPK protein demonstrated good binding with the Lien molecule. In vivo, Lien inhibited Ang Ⅱ-induced abdominal aorta wall thickening, reduced collagen deposition in the ventral aortic vessel, and prevented the occurrence of vascular remodeling by inhibiting MAPK/TGF-ß1/Smad2/3 signaling activation. In addition, Lien inhibited the activation of Ang II-induced MAPK and TGF-ß1/Smad2/3 signaling, attenuating the expression of PCNA and inhibiting the reduction of α-SMA, collectively playing a role in the inhibition of Ang Ⅱ-induced hypertensive vascular remodeling. PD98059 alone could inhibit Ang Ⅱ-induced elevation of TGF-ß1 and the decrease of α-SMA expression. Further, PD98059 combined with Lien had no discrepancy with the inhibitors alone. Simultaneously TPA alone could significantly increase the expression of TGF-ß1 and decrease the expression of α-SMA. Further, Lien could inhibit the effect of TPA. CONCLUSION: This study helped clarify the protective mechanism of Lien during hypertension, elucidating its role as an inhibitor of vascular remodeling and providing an experimental basis for the research and development of novel antihypertensive therapies.


Hypertension , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Vascular Remodeling , Antihypertensive Agents/pharmacology , Proliferating Cell Nuclear Antigen , Aorta, Abdominal , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism
5.
J Ethnopharmacol ; 313: 116535, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37100260

ETHNOPHARMACOLOGICAL RELEVANCE: Qingda granule (QDG) exhibits significant therapeutic effects on high blood pressure, vascular dysfunction, and elevated proliferation of vascular smooth muscle cells by inhibiting multiple pathways. However, the effects and underlying mechanisms of QDG treatment on hypertensive vascular remodeling are unclear. AIM OF THE STUDY: The aim of this study was to determine the role of QDG treatment in hypertensive vascular remodeling in vivo and in vitro. MATERIALS AND METHODS: An ACQUITY UPLC I-Class system coupled with a Xevo XS quadrupole time of flight mass spectrometer was used to characterize the chemical components of QDG. Twenty-five spontaneously hypertensive rats (SHR) were randomly divided into five groups, including SHR (equal volume of double distilled water, ddH2O), SHR + QDG-L (0.45 g/kg/day), SHR + QDG-M (0.9 g/kg/day), SHR + QDG-H (1.8 g/kg/day), and SHR + Valsartan (7.2 mg/kg/day) groups. QDG, Valsartan, and ddH2O were administered intragastrically once a day for 10 weeks. For the control group, ddH2O was intragastrically administered to five Wistar Kyoto rats (WKY group). Vascular function, pathological changes, and collagen deposition in the abdominal aorta were evaluated using animal ultrasound, hematoxylin and eosin and Masson staining, and immunohistochemistry. Isobaric tags for relative and absolute quantification (iTRAQ) was performed to identify differentially expressed proteins (DEPs) in the abdominal aorta, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Cell Counting Kit-8 assays, phalloidin staining, transwell assays, and western-blotting were performed to explore the underlying mechanisms in primary isolated adventitial fibroblasts (AFs) stimulated with transforming growth factor-ß 1 (TGF-ß1) with or without QDG treatment. RESULTS: Twelve compounds were identified from the total ion chromatogram fingerprint of QDG. In the SHR group, QDG treatment significantly attenuated the increased pulse wave velocity, aortic wall thickening, and abdominal aorta pathological changes and decreased Collagen I, Collagen III, and Fibronectin expression. The iTRAQ analysis identified 306 DEPs between SHR and WKY and 147 DEPs between QDG and SHR. GO and KEGG pathway analyses of the DEPs identified multiple pathways and functional processes involving vascular remodeling, including the TGF-ß receptor signaling pathway. QDG treatment significantly attenuated the increased cell migration, actin cytoskeleton remodeling, and Collagen I, Collagen III, and Fibronectin expression in AFs stimulated with TGF-ß1. QDG treatment significantly decreased TGF-ß1 protein expression in abdominal aortic tissues in the SHR group and p-Smad2 and p-Smad3 protein expression in TGF-ß1-stimulated AFs. CONCLUSIONS: QDG treatment attenuated hypertension-induced vascular remodeling of the abdominal aorta and phenotypic transformation of adventitial fibroblasts, at least partly by suppressing TGF-ß1/Smad2/3 signaling.


Hypertension , Transforming Growth Factor beta1 , Rats , Animals , Rats, Inbred WKY , Transforming Growth Factor beta1/metabolism , Fibronectins/metabolism , Vascular Remodeling , Pulse Wave Analysis , Rats, Inbred SHR , Collagen Type I/metabolism , Fibroblasts , Valsartan/metabolism , Valsartan/pharmacology , Valsartan/therapeutic use
6.
J Agric Food Chem ; 71(1): 546-556, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36538589

It is extremely important to promote angiogenesis-dependent osteogenesis and ameliorate bone loss for the prevention and treatment of osteoporosis (OP) development. Vitexin, as one of the major active components in pigeonpea leave, promoted the proliferation of osteoblast and HUVECs in hypoxia. The present study aimed to investigate the effect of vitexin on alleviating osteoporosis in ovariectomized (OVX) rats and further explore its underlying mechanisms. Herein, the OVX rat model was established and treated with vitexin (10 mg kg-1) for 3 months. After being sacrificed, we performed hematoxylin-eosin (H&E) staining and micro-computed tomography (micro-CT) to assess bone mass, which found that trabecular bone was damaged in the OVX rat model. Vitexin could repair bone injury and promote osteoblast biochemical indicators and angiogenesis indicators. Furthermore, EAhy926 cells were used to further explore the effect of vitexin on improving hypoxia-induced endothelial injury in vitro. Vitexin had a protective effect on hypoxia-treated EAhy926 cells and up-regulated vitamin D receptor (VDR) signaling and promoted phosphorylation of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and endothelial NO synthase (eNOS), which enhanced endothelial cell migration and tube formation. VDR small-interfering RNA (siRNA) transfection significantly decreased both VDR and p-eNOS proteins, and VDR siRNA transfection + vitexin could not further increase VDR and downstream proteins. Overall, this study presented that vitexin regulates angiogenesis and osteogenesis in ovariectomy-induced osteoporosis of rats via the VDR/eNOS signaling pathway.


Osteoporosis , Phosphatidylinositol 3-Kinase , Female , Rats , Animals , Humans , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Osteogenesis , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , X-Ray Microtomography , Osteoporosis/etiology , Osteoporosis/genetics , Signal Transduction , RNA, Small Interfering , Ovariectomy/adverse effects , Receptors, Calcitriol/genetics
7.
J Leukoc Biol ; 112(1): 143-155, 2022 07.
Article En | MEDLINE | ID: mdl-35224772

In hyperglycemia-induced complications, macrophages play important roles in disease progression, and altered digestion is a key feature that dictates macrophage function. Recent evidence indicates that kakonein (Ka) possesses anti-inflammatory activities for hyperglycemia-induced complication. In this study, we established a mouse model of Nlrp3+/+ and Nlrp3-/- hyperglycemia and administering Ka, primary culture macrophages were tested by engulfing and digesting microbes. The role of macrophages in the cathepsin B-NLRP3 pathway involved in the mechanism of Ka in restoring macrophage digestion function was investigated using biochemical analyses, molecular biotechnology, and microbiology. Ka restored the function of macrophage digestion, which were same characterized by Nlrp3-/- mice. Meanwhile, kakonein could decrease NLRP3 inflammasome products expression and NLRP3/ASC or NLRP3/Casp1 colocalization in macrophage. Interestingly, Ka suppressed inflammasome response not by reducing NLRP3 and ASC expression but by reducing cathepsin B release and activation. And Ka restored macrophage digestion and inhibited NLRP3 inflammasome activation consistent with cathepsin B inhibitor. It is concluded that Ka reduced the release of lysosomal cathepsin B and consequently inhibited NLRP3 inflammasome activation to prevent macrophage digestion. Hence, Ka may contribute to new targets for treatment of hyperglycemia-associated dysfunction of macrophage digestion and development of innovative drugs.


Anti-Inflammatory Agents , Hyperglycemia , Isoflavones , Macrophages , Phagocytosis , Animals , Anti-Inflammatory Agents/pharmacology , Cathepsin B/metabolism , Disease Models, Animal , Hyperglycemia/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Isoflavones/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phagocytosis/drug effects
8.
J Cell Mol Med ; 25(15): 7169-7180, 2021 08.
Article En | MEDLINE | ID: mdl-34180143

In diabetes-induced complications, inflammatory-mediated endothelial dysfunction is the core of disease progression. Evidence shows that kakonein, an isoflavone common in Pueraria, can effectively treat diabetes and its complications. Therefore, we explored whether kakonein protects cardiovascular endothelial function by inhibiting inflammatory responses. In this study, C57BL/6J mice were injected with streptozocin to establish a diabetes model and treated with kakonein or metformin for 7 days. The protective effect of kakonein on cardiovascular endothelial junctions and NLRP3 inflammasome activation was verified through immunofluorescence and ELISA assay. In addition, the regulation of autophagy on the NLRP3 inflammasome was investigated through Western blot, immunofluorescence and RT-qPCR. Results showed that kakonein restored the function of endothelial junctions and inhibited the assembly and activation of the NLRP3 inflammasome. Interestingly, kakonein decreased the expression of NLRP3 inflammasome protein by not reducing the transcriptional levels of NLRP3 and caspase-1. Kakonein activated autophagy in an AMPK-dependent manner, which reduced the activation of the NLRP3 inflammasome. In addition, kakonein inhibited both hyperglycaemia-induced cardiovascular endothelial junction dysfunction and NLRP3 inflammasome activation, similar to autophagy agonist. Our findings indicated that kakonein exerts a protective effect on hyperglycaemia-induced chronic vascular disease by regulating the NLRP3 inflammasome through autophagy.


Diabetic Angiopathies/drug therapy , Drugs, Chinese Herbal/therapeutic use , Endothelium, Vascular/drug effects , Isoflavones/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Vasodilator Agents/therapeutic use , AMP-Activated Protein Kinase Kinases/metabolism , Animals , Autophagy , Cells, Cultured , Diabetic Angiopathies/metabolism , Drugs, Chinese Herbal/pharmacology , Endothelium, Vascular/metabolism , Inflammasomes/metabolism , Isoflavones/pharmacology , Male , Mice , Mice, Inbred C57BL , Proteolysis , Vasodilator Agents/pharmacology
9.
Front Pharmacol ; 10: 552, 2019.
Article En | MEDLINE | ID: mdl-31178730

Objective: To investigate the effects of Suo Quan Wan (SQW), a traditional Chinese herbal formula, on the overactive bladder (OAB) of type 2 diabetes mellitus (T2DM) mouse models, particularly on its function of mediating the gene and protein expression levels of myosin Va and SLC17A9. Materials and Methods: After 4 weeks high-fat diet (HFD) feeding, C57BL/6J mice were injected with streptozotocin (100 mg/kg) for four times. After 3 weeks, the diabetic mice were treated with SQW for another 3 weeks. Voided stain on paper assay, fasting blood glucose (FBG) test, and oral glucose tolerance test (OGTT) were conducted. Urodynamic test, tension test [α,ß-methylene ATP, electrical-field stimulation (EFS), KCl, and carbachol] and histomorphometry were also performed. Western blot analysis and qPCR assays were used to quantify the expression levels of myosin Va and SLC17A9. Results: The diabetic mice exhibited decreased weight but increased water intake, urine production, FBG, and OGTT. No significant changes were observed after 3 weeks SQW treatment. Urodynamic test indicated that the non-voiding contraction (NVC) frequency, maximum bladder capacity (MBC), residual volume (RV), and bladder compliance (BC) were remarkably increased in the diabetic mice, whereas the voided efficiency (VE) was decreased as a feature of overactivity. Compared with the model mice, SQW treatment significantly improved urodynamic urination with decreased NVC, MBC, RV, and BC, and increased VE. Histomorphometry results showed that the bladder wall of the diabetic mice thickened, and SQW effectively attenuated the pathological alterations. The contract responses of bladder strips to all stimulators were higher in the DSM strips of diabetic mice, whereas SQW treatment markedly decreased the contraction response for all stimuli. Moreover, the protein and gene expression levels of myosin Va and SLC17A9 were up-regulated in the bladders of diabetic mice, but SQW treatment restored such alterations. Conclusion: T2DM mice exhibited the early phase of diabetic bladder dysfunction (DBD) characterized by OAB and bladder dysfunction. SQW can improve the bladder storage and micturition of DBD mice by mediating the protein and gene expression levels of myosin Va and SLC17A9 in the bladder, instead of improving the blood glucose level.

10.
BMC Complement Altern Med ; 19(1): 41, 2019 Feb 04.
Article En | MEDLINE | ID: mdl-30717724

BACKGROUND: This study aimed to elucidate the effects and mechanisms of Radix Linderae (RL) extracts on a mouse model of diabetic bladder dysfunction (DBD), especially on later decompensated phase. METHODS: Male C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ) after 4 weeks of high-fat diet (HFD) feeding. DBD mouse models (later decompensated phase) were developed by 12-weeks persistent hyperglycemia and then treated with RL extracts for 4 weeks. During administration, the fasting blood glucose (FBG) test was performed once a week. Four weeks later, oral glucose tolerance test (OGTT), voided stain on paper (VSOP), and urodynamic alteration were explored. We also performed haematoxylin and eosin (H&E) and Masson's trichrome staining to observe the histology of the bladder. Then, the contractile responses to α, ß-methylene ATP, capsaicin (CAP), KCl and carbachol were measured. Moreover, qPCR assay was performed to analyse the bladder gene expression levels of M3 receptors and TRPV1. RESULTS: The diabetic mice exhibited higher FBG, OGTT and urine production, and no substantial alteration was observed after RL treatment. Urodynamic test showed the maximum bladder capacity (MBC), residual volume (RV) and bladder compliance (BC), as well as the decrement of voided efficiency (VE) and micturition volume (MV), remarkably increased in the DBD mice. Furthermore, RL treatment significant improved urodynamic urination, with lower MBC, RV, and, BC, as well as higher VE and MV, as compared with the model groups. The wall thickness of the bladder and the ratio of smooth muscle/collagen remarkably increased, and RL could effectively attenuate the pathological change. The response of bladder strips to the stimulus was also reduced in the DBD mice, and RL treatment markedly increased the contraction. Furthermore, the gene expression levels of M3 receptors and TRPV1 were down-regulated in the bladders of the diabetic mice, whereas RL treatment retrieved those gene expression levels. CONCLUSIONS: RL extracts can improve the bladder voiding functions of the DBD model mice in later decompensated phase, and underlying mechanisms was associated with mediating the gene expression of M3 receptors and TRPV1 in the bladder instead of improving blood sugar levels.


Diabetes Mellitus, Experimental/complications , Drugs, Chinese Herbal , Lindera/chemistry , Urinary Bladder Diseases/drug therapy , Urinary Bladder/drug effects , Animals , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Mice , Mice, Inbred C57BL , Plant Roots , Urinary Bladder/pathology , Urinary Bladder/physiopathology , Urinary Bladder Diseases/physiopathology
11.
Int Immunopharmacol ; 68: 7-16, 2019 Mar.
Article En | MEDLINE | ID: mdl-30599446

Neutrophil infiltration typically occurs in Helicobacter pylori (H. pylori)-induced acute gastritis; however, this immune response fails to eradicate H. pylori in vivo. Moreover, reactive oxygen species (ROS), which are generated by neutrophils, cause severe damage to gastric mucosa. Patchouli alcohol (PA) has been reported to have effective anti-oxidative and anti-H. pylori activities, and we investigated its effects on H. pylori-induced neutrophil recruitment and activation in this research. In neutrophil recruitment experiment, H. pylori was injected into rat air pouch to explore the effects of PA (10, 20 and 40 mg/kg) on acute inflammatory response. The results revealed that PA significantly reduced the weight of exudate and the number of neutrophils in the air pouch. Meanwhile, remarkable decrements in TNF-α and IL-8 levels in exudates were observed. In neutrophil activation experiment, rat neutrophils were isolated and activated by using 50 µg/mL H. pylori water-soluble surface protein with or without the treatment of PA (5, 10 or 20 µmol/L). Results indicated that PA not only significantly inhibited the production of ROS, but also reduced the gene and protein expressions of p22/p47-phoxes, and the binding of p22/p47-phoxes. Furthermore, the influence of PA on the neutrophil activation genes of H. pylori (h-nap and sabA) was investigated, and the results showed that expressions of h-nap and sabA were remarkably decreased after PA treatment. In conclusion, PA reduced the recruitment and activation of neutrophils induced by H. pylori, as shown by its inhibition of pro-inflammatory factor generation, p22/p47-phoxes function and H. pylori neutrophil activation-related gene expression.


Anti-Inflammatory Agents/pharmacology , Helicobacter Infections/immunology , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Sesquiterpenes/pharmacology , Adhesins, Bacterial/genetics , Animals , Cytokines/immunology , Gene Expression Regulation, Bacterial/drug effects , Helicobacter pylori , Male , NADPH Oxidases/physiology , Neutrophils/physiology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
12.
Phytomedicine ; 55: 310-319, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30385134

BACKGROUND: Recent studies indicate that vascular complications are closely related to diabetes mellitus; in particular, inflammatory-mediated endothelial dysfunction plays a crucial role in diabetes-induced cardiovascular diseases. Therefore, exploring effective methods to suppress endothelial dysfunction via inhibition of inflammatory responses is imperative. Puerarin (Pu), a flavonoid common in Pueraria, has been widely and successfully used to treat cardiovascular diseases in China for many years. However, information on its protective properties in hyperglycemia-induced vascular complications is insufficient. Hypothesis/Purpose: In this study, we investigate the protective effects of puerarin against high glucose-induced endothelial dysfunction and the underlying mechanism of the flavonoid. METHODS: we investigated the protective effects of Pu against hyperglycemia-induced inter-endothelial junction by permeability and transendothelial electrical resistance (TEER) assay. In addition, changes in the Nlrp3 inflammasome activation via reactive oxygen species (ROS)-dependent oxidative pathway were investigated using western blot, immunofluorescence microscopy analyses and flow cytometry. ROS scavenger and Nlrp3 gene silencing were used to determine the roles of the ROS-Nlrp3 pathway involved in the molecular mechanism of Pu. RESULTS: Our findings demonstrate that puerarin inhibits high glucose-induced Nlrp3 inflammasome formation and activation, as shown by fluorescence confocal microscopy and Western blot. Puerarin decreases Nlrp3 protein, which is a critical factor necessary to form an inflammasome complex. We demonstrate that puerarin exerts anti-oxidation and ROS scavenged effects, similar to apocynin (APO). Interestingly, thioredoxin-interacting protein (TXNIP) protein and TXNIP binding to Nlrp3 markedly decreased with puerarin treatment. Together with these changes, puerarin could decrease high mobility group box 1 (HMGB1) release from mouse vascular endothelial cell (mMVECs). We also demonstrate the decreased expression of the tight junction proteins ZO-1/ZO-2, which are related to endothelial permeability after stimulation by high glucose in endothelial cells. Puerarin could recover the gap junction protein and decrease monolayer cell permeability in endothelial cells. In conclusion, we reveal a new protection mechanism of puerarin that inhibits Nlrp3 inflammasome activation and decreases subsequent caspase-1 activation, triggering the release of HMGB1 by reducing ROS generation. CONCLUSIONS: Our findings indicate that puerarin exhibits immense potential and specific therapeutic value in hyperglycemia-related cardiovascular disease and the development of innovative drugs.


Endothelial Cells/drug effects , Enzyme Activation/drug effects , Hyperglycemia/metabolism , Inflammasomes/drug effects , Isoflavones/therapeutic use , Oxidation-Reduction/drug effects , Plant Extracts/pharmacology , Animals , China , Diabetes Complications/drug therapy , Isoflavones/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pueraria/chemistry , Rats , Reactive Oxygen Species/metabolism , Vasodilator Agents/pharmacology
13.
Front Pharmacol ; 9: 1347, 2018.
Article En | MEDLINE | ID: mdl-30524287

Patchouli alcohol (PA), a natural tricyclic sesquiterpene extracted from Pogostemon cablin (Blanco) Benth. (Labiatae), has been found to exhibit anti-Helicobacter pylori and anti-inflammatory properties. In this study, we investigated the protective effect of PA against H. pylori-induced gastritis in vitro and in vivo, and determined the underlying mechanism. In the in vivo experiment, a C57BL/6 mouse model of gastritis was established using H. pylori SS1, and treatments with standard triple therapy or 5, 10, and 20 mg/kg PA were performed for 2 weeks. Results indicated that PA effectively attenuated oxidative stress by decreasing contents of intracellular reactive oxygen species (ROS) and malonyldialdehyde (MDA), and increasing levels of non-protein sulfhydryl (NP-SH), catalase and glutathione (GSH)/glutathione disulphide (GSSG). Additionally, treatment with PA significantly attenuated the secretions of interleukin 1 beta (IL-1ß), keratinocyte chemoattractant and interleukin 6 (IL-6). PA (20 mg/kg) significantly protected the gastric mucosa from H. pylori-induced damage. In the in vitro experiment, GES-1 cells were cocultured with H. pylori NCTC11637 at MOI = 100:1 and treated with different doses of PA (5, 10, and 20 µg/ml). Results indicated that PA not only significantly increased the cell viability and decreased cellular lactate dehydrogenase (LDH) leakage, but also markedly elevated the mitochondrial membrane potential and remarkably attenuated GES-1 cellular apoptosis, thereby protecting gastric epithelial cells against injuries caused by H. pylori. PA also inhibited the secretions of pro-inflammatory factors, such as monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, after PA treatment, the combination of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and cysteine-aspartic proteases 1 (CASPASE-1), the expression levels of NLRP3 inflammasome-related proteins, such as thioredoxin-interacting protein (TXNIP), pro-CASPASE-1, cle-CASPASE-1, and NLRP3 and genes (NLRP3 and CASPASE1) were significantly decreased as compared to the model group. In conclusion, treatment with PA for 2 weeks exhibited highly efficient protective effect against H. pylori-induced gastritis and related damages. The underlying mechanism might involve antioxidant activity, inhibition of pro-inflammatory factor and regulation of NLRP3 inflammasome function. PA exerted anti-H. pylori and anti-gastritis effects and thus had the potential to be a promising candidate for treatment of H. pylori-related diseases.

14.
Mol Immunol ; 103: 209-219, 2018 11.
Article En | MEDLINE | ID: mdl-30312877

Inflammasomes serve as an intracellular machinery to initiate inflammatory response to various danger signals. However, the chronic periodontitis pathological relevance of this inflammasome activation, particularly in periodontal ligament fibroblasts, remains largely unknown. The present study demonstrated that Nlrp3 inflammasome components abundantly expressed in cultured mouse periodontal ligament fibroblasts (mPDLFs). In addition, our data demonstrated that P.g-LPS (Porphyromonas gingivalis Lipopolysaccharide), a major injurious factor during chronic periodontitis, could induce the mPDLFs migration dysfunction and the inhibition of Nlrp3 inflammasome by Isoliquiritigenin (ISO) markedly recovered the migration dysfunction in mPDLFs. And Nlrp3 inflammasome components could be aggregated to form an inflammasome complex on stimulation of P.g-LPS, as shown by fluorescence confocal microscopy. Correspondingly, P.g-LPS induced Nlrp3 inflammasome activation, caspase-1 activation, IL-1ß and HMGB1 release, which were blocked by Nlrp3 inflammasome inhibitor (ISO). Interestingly, reactive oxygen species, TXNIP protein and TXNIP binding to Nlrp3 were markedly increased in mPDLFs with P.g-LPS. Furthermore, ROS generation inhibitor (Apocynin; APO) significantly reduced Nlrp3 inflammasome formation and IL-1ß production in mPDLFs with P.g-LPS. And APO attenuated P.g-LPS-induced TXNIP protein expression and mPDLFs injury. In conclusion, our results demonstrate that ROS/TXNIP/Nlrp3 Inflammasome pathway is a key initiating mechanism necessary for P.g-LPS-induced subsequent mPDLFs inflammatory response leading to chronic periodontitis.


Cell Movement/drug effects , Fibroblasts/drug effects , Inflammasomes/drug effects , Lipopolysaccharides/pharmacology , Signal Transduction/drug effects , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Movement/genetics , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression/drug effects , Inflammasomes/genetics , Inflammasomes/metabolism , Mice , Microscopy, Confocal , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Periodontal Ligament/cytology , Porphyromonas gingivalis/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Thioredoxins/genetics , Thioredoxins/metabolism
15.
Cell Physiol Biochem ; 50(4): 1585-1600, 2018.
Article En | MEDLINE | ID: mdl-30359991

BACKGROUND/AIMS: Angiotensin II (Ang II) is an octapeptide hormone that plays a significant role in mediating hypertension. Although hypertension is considered a chronic inflammatory disease, the molecular basis of the sterile inflammatory response involved in hypertension remains unclear. METHODS: We investigated the role of macrophage NLRP3 inflammasomes in engulfing and digesting microbes, a key macrophage function, and in early onset of hypertension-associated macrophage injury using biochemical analyses, gene silencing, molecular biotechnology, immunofluorescence, and microbiology. RESULTS: Ang II stimulation decreased nitric oxide (NO) release and macrophage digestion in cultured THP-1 cells and markedly increased NLRP3 inflammasome formation and activation. NO release and macrophage digestion were restored by NLRP3 inflammasome inhibition with isoliquiritigenin and gene silencing. This Ang II-induced upregulation of NLRP3 inflammasomes in macrophages was attributed to lysosomal damage and release of cathepsin B. Mechanistically, losartan, a nonpeptide Ang II receptor antagonist, decreased Ang II-induced NLRP3 inflammasome activation, lysosomal membrane permeability, lysosomal cathepsin B release, and macrophage digestion dysfunction. Similarly, Ang II-induced macrophage microbe digestion and NO production, which were blocked by ATI gene silencing. In addition, in vivo experiments showed that the bacteria scavenging function was clearly decreased in macrophages from Ang II-induced hypertensive mice. CONCLUSION: Angiotensin II enhances lysosomal membrane permeabilization and the consequent release of lysosomal cathepsin B, resulting in activation of the macrophage NLRP3 inflammasome. This may contribute to NO mediation of dysfunction in digesting microbes.


Angiotensin II/pharmacology , Cathepsin B/metabolism , Inflammasomes/metabolism , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cathepsin B/antagonists & inhibitors , Cell Line , Cell Membrane Permeability/drug effects , Chalcones/pharmacology , Escherichia coli/physiology , Hypertension/metabolism , Hypertension/pathology , Losartan/pharmacology , Lysosomes/metabolism , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nitric Oxide/metabolism , Phagocytosis/drug effects , RNA Interference , RNA, Small Interfering/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3171-3175, 2018 Aug.
Article Zh | MEDLINE | ID: mdl-30200714

The aim of this paper is to investigate the effect of patchouli alcohol in enhancing Helicobater pylori's action in eradicating macrophages and its mechanism. H. pylori was co-cultured with macrophages at a ratio of MOI=100 in different concentrations of patchouli alcohol. The effect of patchouli alcohol in eradicating macrophages was detected by agar dilution method. The effect of patchouli alcohol on NO and myeloperoxidase (MPO) levels in macrophages were measured by H. pylori by biochemical methods. Patchouli alcohol effect on H. pylori-induced pro-inflammatory gene expression and protein secretion in macrophages were detected by RT-qPCR and ELISA method. The eradication of H. pylori has significantly enhanced, and the destabilization of lysosomes has been reversed. Meanwhile, patchouli alcohol has an effect in inhibiting pro-inflammation and oxidation. The mechanism of patchouli alcohol in eradicating H. pylori and resisting oxidative stress may be associated to the blocking of bacteria escape lysosome combination procedures.


Anti-Bacterial Agents/pharmacology , Helicobacter pylori/drug effects , Lysosomes/immunology , Macrophages/immunology , Sesquiterpenes/pharmacology , Cells, Cultured , Humans , Macrophages/drug effects , Oxidative Stress
17.
Zhongguo Zhong Yao Za Zhi ; 42(3): 562-566, 2017 Feb.
Article Zh | MEDLINE | ID: mdl-28952265

To investigate the effect of patchouli alcohol on inhibiting Helicobater pylori urease activity, and its effect on expression levels of related genes, and lay the foundation for further research on the effect of patchouli alcohol on H. pylori colonization and infection. H. pyloriwas cultured and identified by gram staining, rapid urease test (RUT) and PCR method. Then agar dilution method was used to detect the bacterial survival after 1 h intervention by different concentrations of patchouli alcoholin the acidic (pH 5.3) and neutral (pH 7.0) conditions; berthelot method was used to detect urease activity and RT-qPCR method was used to detect the expression changes of ureA, ureB, ureE, ureH, ureI, and nixA related urease genes. The results showed that the survival rate of H. pyloriwas not significantly changed but the urease activity was obviously decreased after intervention by different concentrations of patchouli alcohol; meanwhile, the expression levels of ureA, ureB, ureE, ureH, ureI, and nixA were decreased to different degrees. Therefore, patchouli alcohol could inhibit H. pylori urease activity in both acidic and neutral conditions, and the mechanism may be related to down-regulation of urease gene expression.


Bacterial Proteins/antagonists & inhibitors , Helicobacter pylori/drug effects , Sesquiterpenes/pharmacology , Urease/antagonists & inhibitors , Genes, Bacterial , Helicobacter pylori/enzymology
...