Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39225528

RESUMEN

In photoelectrochemical cells, promising devices for directly converting solar energy into storable chemical fuels, the spatial variation of the electrostatic potential across the semiconductor-electrolyte junction is the key parameter that determines the cell performance. In principle, electric field induced second harmonic generation (EFISH) provides a contactless in situ spectroscopic tool to measure the spatial variation of electrostatic potential. However, the total second harmonic generation (SHG) signal contains the contributions of the EFISH signals of semiconductor space charge layer and the electric double layer, in addition to the SHG signal of the electrode surface. The interference of these complex quantities hinders their analysis. In this work, to understand and deconvolute their contributions to the total SHG signals, bias-dependent SHG measurements are performed on the rutile TiO2(100)-electrolyte junction as a function of light polarization and crystal azimuthal angle (angle of the incident plane relative to the crystal [001] axis). A quadratic response between SHG intensity and the applied potential is observed in both the accumulation and depletion regions of TiO2. The relative phase difference and amplitude ratio are extracted at selected azimuthal angles and light polarizations. At 0° azimuthal angle and s-in-p-out polarization, the SHG intensity minimum has the best match with the TiO2 flatband potential due to the orthogonal relative phase difference between bias-dependent and bias-independent SHG terms. We further measure the pH-dependent flatband potential and probe the photovoltage under open circuit conditions using the EFISH technique, demonstrating the capability of this contactless method for measuring electrostatic potential at semiconductor-electrolyte junctions.

2.
Nat Mater ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227466

RESUMEN

Transition metal nitride (TMN-) based materials have recently emerged as promising non-precious-metal-containing electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. However, the lack of fundamental understanding of the oxide surface has limited insights into structure-(re)activity relationships and rational catalyst design. Here we demonstrate how a well-defined TMN can dictate/control the as-formed oxide surface and the resulting ORR electrocatalytic activity. Structural characterization of MnN nanocuboids revealed that an electrocatalytically active Mn3O4 shell grew epitaxially on the MnN core, with an expansive strain along the [010] direction to the surface Mn3O4. The strained Mn3O4 shell on the MnN core exhibited an intrinsic activity that was over 300% higher than that of pure Mn3O4. A combined electrochemical and computational investigation indicated/suggested that the enhancement probably originates from a more hydroxylated oxide surface resulting from the expansive strain. This work establishes a clear and definitive atomistic picture of the nitride/oxide interface and provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TMNs, critical for other catalytic interfaces for different electrochemical processes.

3.
J Chem Phys ; 161(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39234973

RESUMEN

Polyyne bridges have attracted extensive interest as molecular wires due to their shallow distance dependence during charge transfer. Here, we investigate whether triplet energy transfer from cadmium selenide (CdSe) quantum dots (QDs) to anthracene acceptors benefits from the high conductance associated with polyyne bridges, especially from the potential cumulene character in their excited states. Introducing π-electron rich oligoyne bridges between the surface-bound anthracene-based transmitter ligands, we explore the triplet energy transfer rate between the CdSe QDs and anthracene core. Our femtosecond transient absorption results reveal that a rate constant damping coefficient of ß is 0.118 ± 0.011 Å-1, attributed to a through-bond coupling mechanism facilitated by conjugation among the anthracene core, the oligoyne bridges, and the COO⊖ anchoring group. In addition, oligoyne bridges lower the T1 energy level of the anthracene-based transmitters, enabling efficient triplet energy transfer from trapped excitons in CdSe QDs. Density-functional theory calculations suggest a slight cumulene character in these oligoyne bridges during triplet energy transfer, with diminished bond length alternation. This work demonstrates the potential of oligoyne bridges in mediating long-distance energy transfer.

4.
J Am Chem Soc ; 146(36): 24925-24934, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189788

RESUMEN

Doping of colloidal nanocrystals offers versatile ways to improve their optoelectronic properties, with potential applications in photocatalysis and photovoltaics. However, the precise role of dopants on the interfacial charge transfer properties of nanocrystals remains poorly understood. Here, we use a Cu-doped InP@ZnSe quantum dot as a model system to investigate the dopant effects on both the intrinsic photophysics and their interfacial charge transfer by combining time-resolved transient absorption and photoluminescent spectroscopic methods. Our results revealed that the Cu dopant can cause the generation of the self-trapped exciton, which prolongs the exciton lifetime from 48.3 ± 1.7 to 369.0 ± 4.3 ns, facilitating efficient charge separation to slow electron and hole acceptors. However, hole localization into the Cu site alters their energetic levels, slowing hole transfer and accelerating charge recombination loss. This double-edged sword role of dopants in charge transfer properties is important in the future design of nanocrystals for their optoelectronic and photocatalytic applications.

5.
J Phys Chem Lett ; 15(35): 9100-9104, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197102

RESUMEN

A microscopic understanding of electric fields and molecular polarization at interfaces will aid in the design of electrocatalytic systems. Herein, variants of 4-mercaptobenzonitrile are designed to test different schemes for breaking the continuous conjugation between a gold electrode surface and a nitrile group. Periodic density functional theory calculations predict applied potential dependencies of the CN vibrational frequencies similar to those observed experimentally. The CN frequency response decreased more when the conjugation was broken between the benzene ring and the nitrile group than between the electrode and the benzene ring, highlighting molecular polarizability effects. The systems with continuous or broken conjugation are dominated by electro-inductive effects or through-space electrostatic effects, respectively. Analysis of the fractional charge transfer between the electrode and the molecule as well as the occupancy of the CN antibonding orbital provides further insights. Balancing the effects of molecular polarizability, electro-induction, and through-space electrostatics has broad implications for electrocatalyst design.

6.
J Am Chem Soc ; 146(21): 14600-14609, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748814

RESUMEN

We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.

7.
J Am Chem Soc ; 146(15): 10489-10497, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38584354

RESUMEN

We describe the synthesis and characterization of a versatile platform for gold functionalization, based on self-assembled monolayers (SAMs) of distal-pyridine-functionalized N-heterocyclic carbenes (NHC) derived from bis(NHC) Au(I) complexes. The SAMs are characterized using polarization-modulation infrared reflectance-absorption spectroscopy, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy. The binding mode is examined computationally using density functional theory, including calculations of vibrational spectra and direct comparisons to the experimental spectroscopic signatures of the monolayers. Our joint computational and experimental analyses provide structural information about the SAM binding geometries under ambient conditions. Additionally, we examine the reactivity of the pyridine-functionalized SAMs toward H2SO4 and W(CO)5(THF) and verify the preservation of the introduced functionality at the interface. Our results demonstrate the versatility of N-heterocyclic carbenes as robust platforms for on-surface acid-base and ligand exchange reactions.

8.
Chem Rev ; 124(9): 5695-5763, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38629390

RESUMEN

The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.

9.
Chem Sci ; 15(12): 4556-4563, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516074

RESUMEN

Europium(iii) complexes are promising for bioimaging because of their long-lived, narrow emission. The photoluminescence (PL) from europium(iii) complexes is usually low. Thus, the effective utilization of low-energy light >400 nm and enhancement of PL are long-standing goals. Here, we show for the first time that 1-naphthoic acid triplet transmitter ligands bound to CdS quantum dots (QDs) and europium(iii) complexes create an energy transfer cascade that takes advantage of the strong QD absorption. This is confirmed by transient absorption spectroscopy, which shows hole mediated triplet energy transfer from QDs to 1-NCA, followed by triplet transfer from 1-NCA to europium(iii) complexes with an efficiency of 65.9 ± 7.7%. Smaller CdS QDs with a larger driving force lead to higher triplet transfer efficiency, with Eu(iii) PL intensity enhanced up to 21.4 times, the highest value ever reported. This hybrid QD system introduces an innovative approach to enhance the brightness of europium complexes.

10.
J Am Chem Soc ; 146(3): 2267-2274, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207288

RESUMEN

Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.

11.
J Am Chem Soc ; 145(41): 22548-22554, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37795975

RESUMEN

Interfacial electric fields play a critical role in electrocatalysis and are often characterized by using vibrational probes attached to an electrode surface. Understanding the physical principles dictating the impact of the applied electrode potential on the vibrational probe frequency is important. Herein, a comparative study is performed for two molecular probes attached to a gold electrode. Both probes contain a nitrile (CN) group, but 4-mercaptobenzonitrile (4-MBN) exhibits continuous conjugation from the electrode through the nitrile group, whereas this conjugation is interrupted for 2-(4-mercaptophenyl)acetonitrile (4-MPCN). Periodic density functional theory calculations predict that the CN vibrational frequency shift of the 4-MBN system is dominated by induction, which is a through-bond polarization effect, leading to a strong potential dependence that does not depend significantly on the orientation of the CN bond relative to the surface. In contrast, the CN vibrational frequency shift of the 4-MPCN system is influenced less by induction and more by through-space electric field effects, leading to a weaker potential dependence and a greater orientation dependence. These theoretical predictions were confirmed by surface-enhanced Raman spectroscopy experiments. Balancing through-bond and through-space electrostatic effects may assist in the fundamental understanding and design of electrocatalytic systems.

12.
J Chem Phys ; 159(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37698197

RESUMEN

Colloidal quantum confined semiconductor-metal heterostructures are promising candidates for solar energy conversion because their light absorbing semiconductor and catalytic components can be independently tuned and optimized. Although the light-to-hydrogen efficiencies of such systems have shown interesting dependences on the morphologies of the semiconductor and metal domains, the mechanisms of such dependences are poorly understood. Here, we use Pt tipped 0D CdS quantum dots (with ∼4.6 nm diameter) and 1D CdS nanorods (of ∼13.8, 27.8, 66.6, and 88.9 nm average rod lengths) as a model system to study the distance-dependence of charge separation and charge recombination times and their impacts on photo-driven H2 production. The H2 generation quantum efficiency increases from 0.2% ± 0.0% in quantum dots to 28.9% ± 0.4% at a rod length of 28 nm and shows negligible changes at longer rod lengths. The half-life time of electron transfer from CdS to Pt increases monotonically with rod length, from 0.7 ± 0.1 in quantum dots to 170.2 ± 29.5 ps in the longest rods, corresponding to a slight decrease in electron transfer quantum efficiency from 92% to 81%. The amplitude-weighted average lifetime of charge recombination of the electron in Pt with the hole in CdS increases from 4.7 ± 0.4 µs in quantum dots to 149 ± 34 µs in 28 nm nanorods, and the lifetime does not increase further in longer rods, resembling the trend in the observed H2 generation quantum efficiency. Our result suggests that the competition of the charge recombination process with the hole removal by the sacrificial electron donor plays a dominant role in the observed nanorod length dependent overall light driven H2 generation quantum efficiency.

13.
J Am Chem Soc ; 145(26): 14260-14266, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37347164

RESUMEN

Photoelectrodes consisting of metal-insulator-semiconductor (MIS) junctions are a promising candidate architecture for water splitting and for the CO2 reduction reaction (CO2RR). The photovoltage is an essential indicator of the driving force that a photoelectrode can provide for surface catalytic reactions. However, for MIS photoelectrodes that contain metal nanoparticles, direct photovoltage measurements at the metal sites under operational conditions remain challenging. Herein, we report a new in situ spectroscopic approach to probe the quasi-Fermi level of metal catalyst sites in heterogeneous MIS photoelectrodes via surface-enhanced Raman spectroscopy. Using a CO2RR photocathode, nanoporous p-type Si modified with Ag nanoparticles, as a prototype, we demonstrate a selective probe of the photovoltage of ∼0.59 V generated at the Si/SiOx/Ag junctions. Because it can directly probe the photovoltage of MIS heterogeneous junctions, this vibrational Stark probing approach paves the way for the thermodynamic evaluation of MIS photoelectrodes with varied architectural designs.

14.
Nat Commun ; 14(1): 2538, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137913

RESUMEN

Epitaxial growth is one of the most commonly used strategies to precisely tailor heterostructures with well-defined compositions, morphologies, crystal phases, and interfaces for various applications. However, as epitaxial growth requires a small interfacial lattice mismatch between the components, it remains a challenge for the epitaxial synthesis of heterostructures constructed by materials with large lattice mismatch and/or different chemical bonding, especially the noble metal-semiconductor heterostructures. Here, we develop a noble metal-seeded epitaxial growth strategy to prepare highly symmetrical noble metal-semiconductor branched heterostructures with desired spatial configurations, i.e., twenty CdS (or CdSe) nanorods epitaxially grown on twenty exposed (111) facets of Ag icosahedral nanocrystal, albeit a large lattice mismatch (more than 40%). Importantly, a high quantum yield (QY) of plasmon-induced hot-electron transferred from Ag to CdS was observed in epitaxial Ag-CdS icosapods (18.1%). This work demonstrates that epitaxial growth can be achieved in heterostructures composed of materials with large lattice mismatches. The constructed epitaxial noble metal-semiconductor interfaces could be an ideal platform for investigating the role of interfaces in various physicochemical processes.

15.
Angew Chem Int Ed Engl ; 62(23): e202302152, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972027

RESUMEN

We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time-resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine-captured CO2 , namely carbamates, for direct photochemical conversion without additional energy input.

17.
J Phys Chem Lett ; 14(9): 2241-2250, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36820889

RESUMEN

Two-dimensional (2D) lead halide perovskite nanoplatelets (NPLs) are promising materials for blue light emission because of the strong quantum confinement in the 2D morphology. However, the identity of carrier traps and the trap influence on charge transfer in these NPLs remain unclear. Herein, transient absorption studies revealed two types of electron traps in 3 monolayer lead bromide perovskite NPLs with trapping lifetime of 9.0 ± 0.6 and 516 ± 59 ps, respectively, while no hole traps were observed. Systematic charge transfer experiments show that electron traps have negligible influence on ultrafast electron transfer or hole transfer but extend the half-lifetime of the charge-separated state from 2.1 ± 0.1 to 68 ± 3 ns after hole transfer, which is explained by the reduced electron-hole overlap. This work contributes to the understanding of the fundamental carrier dynamics in 2D perovskite NPLs and offers guidelines for boosting their performance in optoelectronics and photocatalysis.

18.
J Am Chem Soc ; 145(5): 3238-3247, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36706437

RESUMEN

A well-known catalyst, fac-Re(4,4'-R2-bpy)(CO)3Cl (bpy = bipyridine; R = COOH) (ReC0A), has been widely studied for CO2 reduction; however, its photocatalytic performance is limited due to its narrow absorption range. Quantum dots (QDs) are efficient light harvesters that offer several advantages, including size tunability and broad absorption in the solar spectrum. Therefore, photoinduced CO2 reduction over a broad range of the solar spectrum could be enabled by ReC0A catalysts heterogenized on QDs. Here, we investigate interfacial electron transfer from Cd3P2 QDs to ReC0A complexes covalently bound on the QD surface, induced by photoexcitation of the QD. We explore the effect of triethylamine, a sacrificial hole scavenger incorporated to replenish the QD with electrons. Through combined transient absorption spectroscopic and computational studies, we demonstrate that electron transfer from Cd3P2 to ReC0A can be enhanced by a factor of ∼4 upon addition of triethylamine. We hypothesize that the rate enhancement is a result of triethylamine possibly altering the energetics of the Cd3P2-ReC0A system by interacting with the quantum dot surface, deprotonation of the quantum dot, and preferential solvation, resulting in a shift of the conduction band edge to more negative potentials. We also observe the rate enhancement in other QD-electron acceptor systems. Our findings provide mechanistic insights into hole scavenger-quantum dot interactions and how they may influence photoinduced interfacial electron transfer processes.

19.
J Am Chem Soc ; 145(5): 2860-2869, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715560

RESUMEN

Photoelectrochemical solar fuel generation at the semiconductor/liquid interface consists of multiple elementary steps, including charge separation, recombination, and catalytic reactions. While the overall incident light-to-current conversion efficiency (IPCE) can be readily measured, identifying the microscopic efficiency loss processes remains difficult. Here, we report simultaneous in situ transient photocurrent and transient reflectance spectroscopy (TRS) measurements of titanium dioxide-protected gallium phosphide photocathodes for water reduction in photoelectrochemical cells. Transient reflectance spectroscopy enables the direct probe of the separated charge carriers responsible for water reduction to follow their kinetics. Comparison with transient photocurrent measurement allows the direct probe of the initial charge separation quantum efficiency (ϕCS) and provides support for a transient photocurrent model that divides IPCE into the product of quantum efficiencies of light absorption (ϕabs), charge separation (ϕCS), and photoreduction (ϕred), i.e., IPCE = ϕabsϕCSϕred. Our study shows that there are two general key loss pathways: recombination within the bulk GaP that reduces ϕCS and interfacial recombination at the junction that decreases ϕred. Although both loss pathways can be reduced at a more negative applied bias, for GaP/TiO2, the initial charge separation loss is the key efficiency limiting factor. Our combined transient reflectance and photocurrent study provides a time-resolved view of microscopic steps involved in the overall light-to-current conversion process and provides detailed insights into the main loss pathways of the photoelectrochemical system.

20.
J Am Chem Soc ; 145(1): 676-688, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36538810

RESUMEN

Exploiting noble-metal-free systems for high-performance photocatalytic CO2 reduction still presents a key challenge, partially due to the long-standing difficulties in developing potent and durable earth-abundant photosensitizers. Therefore, based on the very cheap aluminum metal, we have deployed a systematic series of homoleptic Al(III) photosensitizers featuring 2-pyridylpyrrolide ligands for CO2 photoreduction. The combined studies of steady-state and time-resolved spectroscopy as well as quantum chemical calculations demonstrate that in anerobic CH3CN solutions at room temperature, visible-light excitation of the Al(III) photosensitizers leads to an efficient population of singlet excited states with nanosecond-scale lifetimes and notable emission quantum yields (10-40%). The results of transient absorption spectroscopy further identified the presence of emissive singlet and unexpectedly nonemissive triplet excited states. More importantly, the introduction of methyl groups at the pyrrolide rings can greatly improve the visible-light absorption, reducing power, and durability of the Al(III) photosensitizers. With triethanolamine, BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole), and an Fe(II)-quaterpyridine catalyst, the most methylated Al(III) photosensitizer achieves an apparent quantum efficiency of 2.8% at 450 nm for selective (>99%) CO2-to-CO conversion, which is nearly 28 times that of the unmethylated one (0.1%) under identical conditions. The optimal system realizes a maximum turnover number of 10250 and higher robustness than the systems with Ru(II) and Cu(I) benchmark photosensitizers. Quenching experiments using fluorescence spectroscopy elucidate that the photoinduced electron transfer in the Al(III)-sensitized system follows a reductive quenching pathway. The remarkable tunability and cost efficiency of these Al(III) photosensitizers should allow them as promising components in noble-metal-free systems for solar fuel conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA