Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 458: 140184, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968708

RESUMEN

The public health concern of antibiotic residues in animal-origin food has been a long-standing issue. In this work, we present a novel method for antibiotic detection, leveraging optical weak value amplification and harnessing an indirect competitive inhibition assay, which significantly boosts the system's sensitivity in identifying small molecule antibiotics. We chose chloramphenicol as a model compound and mixed it with chloramphenicol-bovine serum albumin conjugates to bind to the chloramphenicol antibody competitively. We achieved a broad linear detection range of up to 3.24 ng/mL and a high concentration resolution of 33.20 pg/mL. To further validate the universality of our proposed detection methodology, we successfully applied it to testing gibberellin and tetracycline. Moreover, we conducted regeneration experiments and real-sample correlation studies. This study introduces a novel strategy for the label-free optical sensing of small molecule antibiotics, greatly expanding the range of applications for sensors utilizing optical weak value amplification.


Asunto(s)
Antibacterianos , Cloranfenicol , Cloranfenicol/análisis , Antibacterianos/análisis , Antibacterianos/farmacología , Contaminación de Alimentos/análisis , Animales , Albúmina Sérica Bovina/química , Límite de Detección
2.
Biosensors (Basel) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39056608

RESUMEN

The demand for accurate and efficient immunoassays calls for the development of precise, high-throughput analysis methods. This paper introduces a novel approach utilizing a weak measurement interface sensor for immunoassays, offering a solution for high throughput analysis. Weak measurement is a precise quantum measurement method that amplifies the weak value of a system in the weak interaction through appropriate pre- and post-selection states. To facilitate the simultaneous analysis of multiple samples, we have developed a chip with six flow channels capable of conducting six immunoassays concurrently. We can perform real-time immunoassay to determine the binding characteristics of spike protein and antibody through real-time analysis of the flow channel images and calculating the relative intensity. The proposed method boasts a simple structure, eliminating the need for intricate nano processes. The spike protein concentration and relative intensity curve were fitted using the Log-Log fitting regression equation, and R2 was 0.91. Utilizing a pre-transformation approach to account for slight variations in detection sensitivity across different flow channels, the present method achieves an impressive limit of detection(LOD) of 0.85 ng/mL for the SARS-CoV-2 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with a system standard deviation of 5.61. Furthermore, this method has been successfully verified for monitoring molecular-specific binding processes and differentiating binding capacities.


Asunto(s)
Técnicas Biosensibles , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/análisis , Inmunoensayo/métodos , Humanos , COVID-19/diagnóstico , COVID-19/virología , Límite de Detección , Ensayos Analíticos de Alto Rendimiento
3.
ACS Sens ; 9(7): 3625-3632, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38943618

RESUMEN

Allergy is a prevalent disease, and the potential allergic population is expanding with industrialization and changes in people's living standards. Serum immunoglobulin E (IgE) level is one of the critical indicators for determining allergy. Here, we proposed a simple, real-time monitoring, low chip cost, label-free aptamer biosensing strategy based on weak value amplification (WVA) for the quantitative detection of IgE in serum samples, enabling early and accurate diagnosis of allergic or hypersensitive patients. The aptasensor combined an imaging weak measurement system with the high specificity of the aptamer for the marker IgE. By modifying the amino group at the 3-terminal end, the anti-IgE aptamers can attach to a dopamine-modified prism's surface and selectively recognize IgE in human serum. In the presence of IgE, a specific binding reaction occurred, resulting in a change in the refractive index of the reactive region's surface, manifested as a change in the light intensity of the camera acquired experimental images. As the concentration of IgE increased, the relative light intensity advanced sequentially. The WVA-aptasensing strategy achieved a wide detection range of 0.01 ng/mL to 2 µg/mL in phosphate buffered saline buffer, with the resolution as low as 4.3 pg/mL. IgE testing experiments in human serum have proved the feasibility of our methods in detecting complex samples. In addition, the method specifically recognized IgE without interference from other proteins. We believe that our proposed sensing strategy opens up new possibilities for ultrahigh sensitivity screening of IgE and can be expanded to detecting other biomolecules.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Inmunoglobulina E , Inmunoglobulina E/sangre , Humanos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección
4.
Talanta ; 277: 126302, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830277

RESUMEN

A label-free optical sandwich immunoassay sensor, utilizing weak value amplification and total internal reflection, was devised for real-time, high-sensitivity analysis and detection of low-concentration targets. 3D printed channels and sodium chloride solution were employed to ensure reproducibility, reliability, and stability of the measurements for calibration. The sandwich structure demonstrated enhanced responsiveness in the proposed optical biosensor through a comparative analysis of the direct assay and sandwich assay for detecting alpha-fetoprotein (AFP) at the same concentration. By optimizing the binding sequences of the coating antibody, target, and detection antibody in the sandwich method, a more suitable sandwich sensing approach based on weak value amplification was achieved. With this approach, the limit of detection (LOD) of 6.29 ng/mL (pM level) for AFP in PBS solution was achieved. AFP testing and regeneration experiments in human serum have proved the feasibility of our methods in detecting complex samples and the reusability of sensing chips. Additionally, the method demonstrated excellent selectivity for unpaired antigens. The efficacy of this methodology was evaluated by simultaneously detecting AFP, carcinoembryonic antigen (CEA), and CA15-3 on a singular sensor chip. In conclusion, the label-free sandwich immunoassay sensing scheme holds promise for advancing the proposed optical sensors based on weak value amplification in early diagnosis and prevention applications. Compared to other biomarker detection methods, it will be easier to promote in practical applications.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Límite de Detección , alfa-Fetoproteínas , Técnicas Biosensibles/métodos , alfa-Fetoproteínas/análisis , Humanos , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Inmunoensayo/métodos , Mucina-1/sangre , Mucina-1/análisis , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
5.
Talanta ; 257: 124217, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801563

RESUMEN

In this study, an interfacial biosensing scheme with ultra-precision is proposed. The scheme uses weak measurement techniques to ensure ultra-high sensitivity of the sensing system while improving the stability of the system through self-referencing and pixel point averaging, thus achieving ultra-high detection accuracy of biological samples. In specific experiments, we have used the biosensor in this study to perform specific binding reaction experiments for protein A and Mouse IgG with a detection line of 2.71 ng/mL for IgG. In addition, the sensor is non-coated, simple in structure, easy to operate, and low in cost of use.


Asunto(s)
Técnicas Biosensibles , Animales , Ratones , Técnicas Biosensibles/métodos , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA