Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(18): 29007-29020, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34615019

RESUMEN

In this study, a strongly reflective and photoluminescent (PL) poly(lactic-co-glycolic acid) quantum dot (QD) hybrid nanofiber (PQHN) structure is introduced to enhance the luminous efficacy of QD-phosphor hybrid white light-emitting diodes (QD-WLEDs). As the thickness of PQHN film increases, the PL is found to continuously increase, exhibiting a maximum peak intensity at 120 µm, which is 1.92 times that at 12 µm, and showing the highest diffuse reflectance of 94.4% at 640 nm. Consequently, while using the QD-WLEDs, the PQHN structure achieves a 53.8% improvement in luminous flux compared with the traditional structure under a similar correlated color temperature (CCT) of 3,540 K, achieving a high luminous efficacy of 202.11 lm W-1 for QD-WLEDs. In addition, the maximum deviation of the CCT is only 11 K when the current is changed from 50 to 950 mA, demonstrating good stability. Therefore, the PQHN films have great potential in lighting systems as a hybrid functional film including light conversion and reflectance.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34443928

RESUMEN

Quantum dots (QDs) have been widely applied in luminescent sources due to their strong optical characteristics. However, a moisture environment causes their quenching, leading to an inferior optical performance in commercial applications. In this study, based on the high moisture resistance of epoxy resin, a novel epoxy/QDs composite particle structure was proposed to solve this issue. Flexible luminescent films could be obtained by packaging composite particles in silicone resin, combining the hydrophobicity of epoxy resin and the flexibility of PDMS simultaneously. The photoluminescence and light extraction were improved due to the scattering properties of the structure of composite particles, which was caused by the refractive index mismatch between the epoxy and silicone resin. Compared to the QD/silicone film under similar lighting conditions, the proposed flexible film demonstrated increased light efficiency as well as high moisture stability. The results revealed that a light-emitting diode (LED) device using the composite particle flexible (CPF) structure obtained a 34.2% performance enhancement in luminous efficiency as well as a 32% improvement in color conversion efficiency compared to those of devices with QD/silicone film (QSF) structure. Furthermore, the CPF structure exhibited strong thermal and moisture stability against extreme ambient conditions of 85 °C and 85% relative humidity simultaneously. The normalized luminous flux degradation of devices embedded in CPF and QSF structures after aging for 118 h were ~20.2% and ~43.8%, respectively. The satisfactory performance of the CPF structure in terms of optical and moisture stability shows its great potential value in flexible commercial QD-based LED displays and lighting applications.

3.
Opt Express ; 29(10): 14218-14230, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985146

RESUMEN

Currently, laser-driven lighting based on phosphor-in-glass (PIG) has drawn much interest in solid state lighting due to its high electro-optical efficiency and high-power density. However, the fabrication of PIG requires expensive equipment, long sintering time, and high cost. In this work, we utilized a simple, fast, and high temperature Joule heating process to make phosphor-in-glass bulk sintered in less than 20 s, which greatly improved the production efficiency. The PIG converters sintered under different sintering temperatures were investigated experimentally. The optimized PIG converter exhibited high and robust luminous efficacy (164.24 lm/W), a high radiant flux, and a small CCT deviation at 3.00 W. Moreover, the optimized sample also showed high temperature resistance at 3.00 W, robust temperature management during normal working. These results indicated that the optimized PIG converter sintered by the Joule heating process could offer great potential for the application in high-power laser-driven white lighting.

4.
Bioinspir Biomim ; 15(1): 016003, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31652429

RESUMEN

Whiteness is an intriguing property in some creature surfaces and usually originates from broadband multi-scattering by the refined structures. In this article, we report that Boehmeria nivea, a widely distributed tropical and subtropical plant, has a highly reflective layer on the lower surface of the leaf. Morphological characterization demonstrates that the layer consists of numerous wrinkled micro-filaments, forming a disordered porous network to efficiently scatter visible light. Moreover, the white layer is shown to exhibit a protection function by reflecting incident light when exposed to high radiation. The reflective layer can slightly improve the absorption by the leaves when light is incident on the upper surface of the leaves. In addition, the porous layer shows hydrophobicity. To mimic the white layer, a well-established electrospinning process is used to fabricate porous polymeric membranes, consisting of nano-wrinkled filaments with micro-sized diameter. Finally, the artificial membranes are demonstrated to have a light-shielding function in a photo-chromic experiment and a light-management ability for quantum dot film.


Asunto(s)
Materiales Biomiméticos , Boehmeria/ultraestructura , Materiales Biomiméticos/química , Color , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Hojas de la Planta/ultraestructura , Porosidad , Dispersión de Radiación
5.
Beilstein J Nanotechnol ; 10: 666-676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931208

RESUMEN

We demonstrate an ultrasonication-assisted synthesis without polar solvent of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals (PNCs) and their reversible transformation. The as-prepared CsPbBr3 PNCs and Cs4PbBr6 PNCs exhibit different optical properties that depend on their morphology, size, and structure. The photoluminescence (PL) emission and quantum yield (QY) of the CsPbBr3 PNCs can be tuned by changing the ultrasound power, radiation time, and the height of the vibrating spear. The optimized CsPbBr3 PNCs show a good stability and high PL QY of up to 85%. In addition, the phase transformation between CsPbBr3 PNCs and Cs4PbBr6 PNCs can be obtained through varying the amount of oleylamine (OAm) and water. The mechanism of this transformation between the CsPbBr3 PNCs and Cs4PbBr6 PNCs and their morphology change are studied, involving ions equilibrium, anisotropic growth kinetics, and CsBr-stripping process.

6.
Opt Express ; 27(4): A25-A38, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876002

RESUMEN

We develop a facile, fast, and cost-effective method based on the electrowetting effect to fabricate concave microlens arrays (MLA) with a tunable height-to-radius ratio, namely aspect ratio (AR). The electric parameters including voltage and frequency are demonstrated to play an important role in the MLA forming process. With the optimized frequency of 5 Hz, the AR of MLA are tuned from 0.057 to 0.693 for an increasing voltage from 0 V to 180 V. The optical properties of the MLA, including their transmittance and light diffusion capability, are investigated by spectroscopic measurements and ray-tracing simulations. We show that the overall transmittance can be maintained above around 90% over the whole visible range, and that an AR exceeding 0.366 is required to sufficiently broaden the transmitted light angular distribution. These properties enable to apply the developed MLA films to correlated-color-temperature (CCT)-tunable light-emitting-diodes (LEDs) to enhance their angular color uniformity (ACU). Our results show that the ACU of CCT-tunable LEDs is significantly improved while preserving almost the same lumen output, and that the MLA with the highest AR exhibits the best ACU performance.

7.
Opt Express ; 26(21): 27716-27725, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469833

RESUMEN

Polyacrylonitrile electrospinning nanofiber film was introduced into a light emitting diode (LED) lamp to exploit the strong reflective and scattering effects. The light extraction mechanism was studied systematically for three different electrospinning types in three different types of LED lamps. For the all-electrospinning types, the luminous efficacy increased for the white LED, outwards remote phosphor layer, and inwards remote phosphor layer lamps by 10.98, 16.97, and 18.35%, respectively, compared with the reference lamp. Lamps with stronger backscatter had larger luminous efficacy enhancements. The reflector-electrospinning type helped redirect lights with large emission angles. The substrate-electrospinning type was beneficial for recycling the total interior reflection lights and increasing the yellow to blue ratio. Additionally, the all-electrospinning white LED lamps remains 97.89% luminous flux after a 96-hour aging process. Electrospinning fiber films are favorable luminous efficacy enhancers for the future generation of LED lamps.

8.
Opt Express ; 25(17): 20598-20611, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29041738

RESUMEN

Based on electrospinning technology, in this study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber films with high reflectivity and scattering properties. Various films with different thicknesses and fiber diameters were fabricated by changing the electrospinning time and solution concentration, respectively. Detailed optical measurements demonstrate that the film reflectance and scattering ability increase with the thickness, whereas fiber diameter contributes little to both properties. With optimized film thickness and fiber diameter, nanofiber films feature whiteness with a reflectance of 98.8% compared to the BaSO4 white plate. Furthermore, when deposited on the reflector surface of a remote phosphor-converted light-emitting diode lamp, nanofiber films witness a correlated color temperature deviation decrease from 8880 K to 1407 K and a luminous efficiency improvement of 11.66% at 350 mA. Therefore, the nanofiber films can be applied in lighting systems as a highly reflective coating to improve their light efficacy and quality.

9.
Mater Sci Eng C Mater Biol Appl ; 81: 213-223, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887967

RESUMEN

Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe3+ ion detection, and the lowest detection limit for Fe3+ is 0.239µM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection.


Asunto(s)
Hierro/análisis , Carbono , Colorantes Fluorescentes , Espectroscopía de Fotoelectrones , Puntos Cuánticos , Espectroscopía Infrarroja por Transformada de Fourier
10.
Opt Express ; 24(21): 23685-23696, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27828205

RESUMEN

The color uniformity (CU) of chip-on-board (COB) white light emitting diodes (WLEDs) has been improved by using remote phosphor films with two freeform surfaces (TFS-RPFs). The finite-difference time-domain (FDTD), Monte Carlo ray-tracing, and color-thickness feedback (CTFB) methods were used to design the TFS-RPFs: the blue light distribution of COB WLEDs is greatly affected by the angular thickness distribution of TFS-RPFs, and a high CU can be achieved iteratively. The directional inconsistency of incident and emergent blue light, scattering effect of TFS-RPFs, and illumination characteristics of the COB source were also investigated. COB WLEDs containing optimized TFS-RPFs achieved high CU with a decrease of 26.2% in maximum CCT deviation; thus, TFS-RPFs can improve the CU of COB WLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...