Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Biol ; 33(18): 3821-3834.e5, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37572663

RESUMEN

During central nervous system (CNS) development, a precisely patterned vasculature emerges to support CNS function. How neurons control angiogenesis is not well understood. Here, we show that the neuromodulator dopamine restricts vascular development in the retina via temporally limited production by an unexpected neuron subset. Our genetic and pharmacological experiments demonstrate that elevating dopamine levels inhibits tip-cell sprouting and vessel growth, whereas reducing dopamine production by all retina neurons increases growth. Dopamine production by canonical dopaminergic amacrine interneurons is dispensable for these events. Instead, we found that temporally restricted dopamine production by retinal ganglion cells (RGCs) modulates vascular development. RGCs produce dopamine precisely during angiogenic periods. Genetically limiting dopamine production by ganglion cells, but not amacrines, decreases angiogenesis. Conversely, elevating ganglion-cell-derived dopamine production inhibits early vessel growth. These vasculature outcomes occur downstream of vascular endothelial growth factor receptor (VEGFR) activation and Notch-Jagged1 signaling. Jagged1 is increased and subsequently inhibits Notch signaling when ganglion cell dopamine production is reduced. Our findings demonstrate that dopaminergic neural activity from a small neuron subset functions upstream of VEGFR to serve as developmental timing cue that regulates vessel growth.


Asunto(s)
Dopamina , Factor A de Crecimiento Endotelial Vascular , Dopamina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Retina , Células Ganglionares de la Retina/metabolismo , Transducción de Señal
2.
Immunity ; 55(12): 2318-2335.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36379210

RESUMEN

Microglia utilize their phagocytic activity to prune redundant synapses and refine neural circuits during precise developmental periods. However, the neuronal signals that control this phagocytic clockwork remain largely undefined. Here, we show that neuronal signal-regulatory protein alpha (SIRPα) is a permissive cue for microglial phagocytosis in the developing murine retina. Removal of neuronal, but not microglial, SIRPα reduced microglial phagocytosis, increased synpase numbers, and impaired circuit function. Conversely, prolonging neuronal SIRPα expression extended developmental microglial phagocytosis. These outcomes depended on the interaction of presynaptic SIRPα with postsynaptic CD47. Global CD47 deficiency modestly increased microglial phagocytosis, while CD47 overexpression reduced it. This effect was rescued by coexpression of neuronal SIRPα or codeletion of neuronal SIRPα and CD47. These data indicate that neuronal SIRPα regulates microglial phagocytosis by limiting microglial SIRPα access to neuronal CD47. This discovery may aid our understanding of synapse loss in neurological diseases.


Asunto(s)
Antígeno CD47 , Receptores Inmunológicos , Ratones , Animales , Antígeno CD47/metabolismo , Receptores Inmunológicos/metabolismo , Macrófagos/metabolismo , Fagocitosis/fisiología , Retina , Antígenos de Diferenciación/metabolismo
3.
Dis Model Mech ; 15(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972048

RESUMEN

Mutations in the potassium channel tetramerization domain-containing 7 (KCTD7) gene are associated with a severe neurodegenerative phenotype characterized by childhood onset of progressive and intractable myoclonic seizures accompanied by developmental regression. KCTD7-driven disease is part of a large family of progressive myoclonic epilepsy syndromes displaying a broad spectrum of clinical severity. Animal models of KCTD7-related disease are lacking, and little is known regarding how KCTD7 protein defects lead to epilepsy and cognitive dysfunction. We characterized Kctd7 expression patterns in the mouse brain during development and show that it is selectively enriched in specific regions as the brain matures. We further demonstrate that Kctd7-deficient mice develop seizures and locomotor defects with features similar to those observed in human KCTD7-associated diseases. We also show that Kctd7 is required for Purkinje cell survival in the cerebellum and that selective degeneration of these neurons is accompanied by defects in cerebellar microvascular organization and patterning. Taken together, these results define a new model for KCTD7-associated epilepsy and identify Kctd7 as a modulator of neuron survival and excitability linked to microvascular alterations in vulnerable regions.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Células de Purkinje , Animales , Niño , Humanos , Ratones , Epilepsias Mioclónicas Progresivas/genética , Fenotipo , Canales de Potasio/genética , Convulsiones/genética
4.
Cell Rep ; 34(5): 108698, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535040

RESUMEN

Cone photoreceptors detect light and are responsible for color vision. These cells display a distinct polarized morphology where nuclei are precisely aligned in the apical retina. However, little is known about the mechanisms involved in cone nuclear positioning or the impact of this organization on retina function. We show that the serine/threonine kinase LKB1 and one of its substrates, AMPK, regulate cone nuclear positioning. In the absence of either molecule, cone nuclei are misplaced along the axon, resulting in altered nuclear lamination. LKB1 is required specifically in cones to mediate this process, and disruptions in nuclear alignment result in reduced cone function. Together, these results identify molecular determinants of cone nuclear position and indicate that cone nuclear position alignment enables proper visual function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Visión Ocular/fisiología , Animales , Ratones
5.
Elife ; 92020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32378514

RESUMEN

Structural changes in pre and postsynaptic neurons that accompany synapse formation often temporally and spatially overlap. Thus, it has been difficult to resolve which processes drive patterned connectivity. To overcome this, we use the laminated outer murine retina. We identify the serine/threonine kinase LKB1 as a key driver of synapse layer emergence. The absence of LKB1 in the retina caused a marked mislocalization and delay in synapse layer formation. In parallel, LKB1 modulated postsynaptic horizontal cell refinement and presynaptic photoreceptor axon growth. Mislocalized horizontal cell processes contacted aberrant cone axons in LKB1 mutants. These defects coincided with altered synapse protein organization, and horizontal cell neurites were misdirected to ectopic synapse protein regions. Together, these data suggest that LKB1 instructs the timing and location of connectivity in the outer retina via coordinate regulation of pre and postsynaptic neuron structure and the localization of synapse-associated proteins.


Asunto(s)
Neuritas/enzimología , Neurogénesis , Células Fotorreceptoras/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/enzimología , Proteínas Quinasas Activadas por AMP , Animales , Femenino , Masculino , Ratones Noqueados , Mutación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
6.
J Phys Chem B ; 123(30): 6430-6443, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313925

RESUMEN

Isotopologues are valuable vibrational probes that shift features in a vibrational spectrum while preserving the electronic structure of the molecule. We report the vibrational and electronic spectra of perdeuterated tryptophan in solution (l-Trp-d5), as Trp48-d5 in azurin, and as the photogenerated neutral tryptophan radical, Trp48-d5•, in azurin. The UV resonance Raman bands of the perdeuterated closed-shell tryptophan in solution and in azurin are lower in frequency relative to the protiated counterpart. The observed decrease in frequencies of l-Trp-d5 bands relative to l-Trp-h5 enables the analysis of vibrational markers of other amino acids, e.g., phenylalanine, that overlap with some modes of l-Trp-h5. The Raman intensities vary between l-Trp-d5 and l-Trp-h5; these differences likely reflect modifications in normal mode composition upon perdeuteration. Analysis of the W3, W6, and W17 modes suggests that the W3 mode retains its utility as a conformational marker; however, the H-bond markers W6 and W17 appear to be less sensitive upon perdeuteration. The neutral tryptophan radical, Trp48-d5•, was generated in azurin with a slightly lower radical quantum yield than for Trp48-h5•. The visible resonance Raman spectrum of Trp48-d5• is different from that of Trp48-h5•, especially in terms of relative intensities, and all assignable peaks decreased in frequency upon perdeuteration. The absorption and emission spectra of the perdeuterated closed-shell and radical species exhibited hypsochromic shifts of less than 1 nm relative to the protiated species. The data presented here indicate that l-Trp-d5 is a valuable probe of vibrational structure, with minimal modification of photoreactivity and photophysics compared to l-Trp-h5.


Asunto(s)
Azurina/química , Espectrometría Raman/métodos , Triptófano/química , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA