Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Materials (Basel) ; 16(14)2023 Jul 17.
Article En | MEDLINE | ID: mdl-37512312

I-III-VI type QDs have unique optoelectronic properties such as low toxicity, tunable bandgaps, large Stokes shifts and a long photoluminescence lifetime, and their emission range can be continuously tuned in the visible to near-infrared light region by changing their chemical composition. Moreover, they can avoid the use of heavy metal elements such as Cd, Hg and Pb and highly toxic anions, i.e., Se, Te, P and As. These advantages make them promising candidates to replace traditional binary QDs in applications such as light-emitting diodes, solar cells, photodetectors, bioimaging fields, etc. Compared with binary QDs, multiple QDs contain many different types of metal ions. Therefore, the problem of different reaction rates between the metal ions arises, causing more defects inside the crystal and poor fluorescence properties of QDs, which can be effectively improved by doping metal ions (Zn2+, Mn2+ and Cu+) or surface coating. In this review, the luminous mechanism of I-III-VI type QDs based on their structure and composition is introduced. Meanwhile, we focus on the various synthesis methods and improvement strategies like metal ion doping and surface coating from recent years. The primary applications in the field of optoelectronics are also summarized. Finally, a perspective on the challenges and future perspectives of I-III-VI type QDs is proposed as well.

2.
Chemistry ; 29(45): e202301123, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37267271

The application of multiple quantum dots (QDs) in the field of white light emitting diodes (WLEDs) is still an important challenge due to their low luminous efficiency and quenching phenomenon. In this paper, we prepared AgInS2 QDs/zeolitic imidazolate framework-70 (AIS/ZIF-70) composite by a microwave hydrothermal method. Owing to the high porosity and stability of ZIF-70, it could effectively prevent quenching issues due to the aggregation of QDs. Since the ZIF-70 and QDs were chemically bonded, the formation of the ZnS layer could effectively passivate the surface defect and thus the quantum yield reached 21.49 % in aqueous solution. The luminous efficiency (LE) of the assembled AIS/ZIF-based WLED was reinforced by 6.8 times with a molar ratio of AgIn/Zn=18, i. e. at 5.26 % molar fraction of ZIF-70. Moreover, the color rendering index (CRI) and correlated color temperature (CCT) of AIS/ZIF-based WLED were 84.3 and 3631 K, respectively, indicating its potential application in solid-state lighting.

...