Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459021

RESUMEN

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Asunto(s)
Manosa-6-Fosfato Isomerasa , Manosa , Animales , Ratones , Manosa-6-Fosfato Isomerasa/metabolismo , Glicosilación , Manosa/metabolismo , Glucosa/metabolismo , Antivirales/farmacología
2.
J Adv Res ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37802148

RESUMEN

INTRODUCTION: Emerging severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 causes a global health disaster and pandemic. Seeking effective anti-pan-CoVs drugs benefit critical illness patients of coronavirus disease 2019 (COVID-19) but also may play a role in emerging CoVs of the future. OBJECTIVES: This study tested the hypothesis that alisol B 23-acetate could be a viral entry inhibitor and would have proinflammatory inhibition for COVID-19 treatment. METHODS: SARS-CoV-2 and its variants infected several cell lines were applied to evaluate the anti-CoVs activities of alisol B 23-aceate in vitro. The effects of alisol B 23-acetate on in vivo models were assessed by using SARS-CoV-2 and its variants challenged hamster and human angiotensin-converting enzyme 2 (ACE2) transgenic mice. The target of alisol B 23-acetate to ACE2 was analyzed using hydrogen/deuterium exchange (HDX) mass spectrometry (MS). RESULTS: Alisol B 23-acetate had inhibitory effects on different species of coronavirus. By using HDX-MS, we found that alisol B 23-acetate had inhibition potency toward ACE2. In vivo experiments showed that alisol B 23-acetate treatment remarkably decreased viral copy, reduced CD4+ T lymphocytes and CD11b+ macrophages infiltration and ameliorated lung damages in the hamster model. In Omicron variant infected human ACE2 transgenic mice, alisol B 23-acetate effectively alleviated viral load in nasal turbinate and reduced proinflammatory cytokines interleukin 17 (IL17) and interferon γ (IFNγ) in peripheral blood. The prophylactic treatment of alisol B 23-acetate by intranasal administration significantly attenuated Omicron viral load in the hamster lung tissues. Moreover, alisol B 23-acetate treatment remarkably inhibited proinflammatory responses through mitigating the secretions of IFNγ and IL17 in the cultured human and mice lymphocytes in vitro. CONCLUSION: Alisol B 23-acetate could be a promising therapeutic agent for COVID-19 treatment and its underlying mechanisms might be attributed to viral entry inhibition and anti-inflammatory activities.

3.
J Med Virol ; 95(1): e28326, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36411262

RESUMEN

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.


Asunto(s)
COVID-19 , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , Técnicas de Cultivo de Célula , Genoma Viral , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes
4.
J Biol Chem ; 298(11): 102511, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36259516

RESUMEN

Revealing the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and cell-to-cell spread might provide insights for understanding the underlying mechanisms of viral pathogenesis, tropism, and virulence. The signaling pathways involved in SARS-CoV-2 entry and viral spike-mediated cell-to-cell fusion remain elusive. In the current study, we found that macropinocytosis inhibitors significantly suppressed SARS-CoV-2 infection at both the entry and viral spike-mediated cell-to-cell fusion steps. We demonstrated that SARS-CoV-2 entry required the small GTPase Rac1 and its effector kinase p21-activated kinase 1 by dominant-negative and RNAi assays in human embryonic kidney 293T-angiotensin-converting enzyme 2 cells and that the serine protease transmembrane serine protease 2 reversed the decrease in SARS-CoV-2 entry caused by the macropinocytosis inhibitors. Moreover, in the cell-to-cell fusion assay, we confirmed that macropinocytosis inhibitors significantly decreased viral spike-mediated cell-to-cell fusion. Overall, we provided evidence that SARS-CoV-2 utilizes a macropinocytosis pathway to enter target cells and to efficiently promote viral spike-mediated cell-to-cell fusion.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Fusión Celular , Internalización del Virus , Serina Proteasas
5.
Emerg Microbes Infect ; 11(1): 2093-2101, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35943779

RESUMEN

The replication and pathogenicity of SARS-CoV-2 Omicron BA.2 are comparable to that of BA.1 in experimental animal models. However, BA.2 has rapidly emerged to overtake BA.1 to become the predominant circulating SARS-CoV-2 variant worldwide. Here, we compared the replication fitness of BA.1 and BA.2 in cell culture and in the Syrian hamster model of COVID-19. Using a reverse genetics approach, we found that the BA.1-specific spike mutation G496S compromises its replication fitness, which may contribute to BA.1 being outcompeted by BA.2 in the real world. Additionally, the BA.1-unique G496S substitution confers differentiated sensitivity to therapeutic monoclonal antibodies, which partially recapitulates the immunoevasive phenotype of BA.1 and BA.2. In summary, our study identified G496S as an important determinant during the evolutionary trajectory of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales , Cricetinae , Humanos , Mesocricetus , Mutación Missense , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
6.
Int J Biol Sci ; 18(12): 4781-4791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874942

RESUMEN

Rapid development and successful use of vaccines against SARS-CoV-2 might hold the key to curb the ongoing pandemic of COVID-19. Emergence of vaccine-evasive SARS-CoV-2 variants of concern (VOCs) has posed a new challenge to vaccine design and development. One urgent need is to determine what types of variant-specific and bivalent vaccines should be developed. Here, we compared homotypic and heterotypic protection against SARS-CoV-2 infection of hamsters with monovalent and bivalent whole-virion inactivated vaccines derived from representative VOCs. In addition to the ancestral SARS-CoV-2 Wuhan strain, Delta (B.1.617.2; δ) and Theta (P.3; θ) variants were used in vaccine preparation. Additional VOCs including Omicron (B.1.1.529) and Alpha (B.1.1.7) variants were employed in the challenge experiment. Consistent with previous findings, Omicron variant exhibited the highest degree of immune evasion, rendering all different forms of inactivated vaccines substantially less efficacious. Notably, monovalent and bivalent Delta variant-specific inactivated vaccines provided optimal protection against challenge with Delta variant. Yet, some cross-variant protection against Omicron and Alpha variants was seen with all monovalent and bivalent inactivated vaccines tested. Taken together, our findings support the notion that an optimal next-generation inactivated vaccine against SARS-CoV-2 should contain the predominant VOC in circulation. Further investigations are underway to test whether a bivalent vaccine for Delta and Omicron variants can serve this purpose.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Cricetinae , Humanos , SARS-CoV-2 , Vacunas Combinadas , Vacunas de Productos Inactivados
7.
Science ; 377(6604): 428-433, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35737809

RESUMEN

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , COVID-19/transmisión , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2/patogenicidad , Virulencia
8.
Protein Cell ; 13(12): 940-953, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35384604

RESUMEN

The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , SARS-CoV-2 , Animales , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Cricetinae , Humanos , Ratones , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Tratamiento Farmacológico de COVID-19
9.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35234870

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Brotes de Enfermedades , Femenino , Hong Kong/epidemiología , Humanos , Mamíferos , ARN Viral/genética , SARS-CoV-2/genética
10.
Clin Infect Dis ; 75(1): e1101-e1111, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34536277

RESUMEN

BACKGROUND: The effect of low environmental temperature on viral shedding and disease severity of Coronavirus Disease 2019 (COVID-19) is uncertain. METHODS: We investigated the virological, clinical, pathological, and immunological changes in hamsters housed at room (21°C), low (12-15°C), and high (30-33°C) temperature after challenge by 105 plaque-forming units of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The nasal turbinate, trachea, and lung viral load and live virus titer were significantly higher (~0.5-log10 gene copies/ß-actin, P < .05) in the low-temperature group at 7 days postinfection (dpi). The low-temperature group also demonstrated significantly higher level of tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1ß, and C-C motif chemokine ligand 3, and lower level of the antiviral IFN-α in lung tissues at 4 dpi than the other 2 groups. Their lungs were grossly and diffusely hemorrhagic, with more severe and diffuse alveolar and peribronchiolar inflammatory infiltration, bronchial epithelial cell death, and significantly higher mean total lung histology scores. By 7 dpi, the low-temperature group still showed persistent and severe alveolar inflammation and hemorrhage, and little alveolar cell proliferative changes of recovery. The viral loads in the oral swabs of the low-temperature group were significantly higher than those of the other two groups from 10 to 17 dpi by about 0.5-1.0 log10 gene copies/ß-actin. The mean neutralizing antibody titer of the low-temperature group was significantly (P < .05) lower than that of the room temperature group at 7 dpi and 30 dpi. CONCLUSIONS: This study provided in vivo evidence that low environmental temperature exacerbated the degree of virus shedding, disease severity, and tissue proinflammatory cytokines/chemokines expression, and suppressed the neutralizing antibody response of SARS-CoV-2-infected hamsters. Keeping warm in winter may reduce the severity of COVID-19.


Asunto(s)
COVID-19 , Actinas , Animales , Anticuerpos Neutralizantes , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón , Mesocricetus , SARS-CoV-2 , Temperatura
11.
Cell Discov ; 7(1): 100, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702802

RESUMEN

Coronavirus Disease 2019 (COVID-19) is predominantly a respiratory tract infection that significantly rewires the host metabolism. Here, we monitored a cohort of COVID-19 patients' plasma lipidome over the disease course and identified triacylglycerol (TG) as the dominant lipid class present in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced metabolic dysregulation. In particular, we pinpointed the lipid droplet (LD)-formation enzyme diacylglycerol acyltransferase (DGAT) and the LD stabilizer adipocyte differentiation-related protein (ADRP) to be essential host factors for SARS-CoV-2 replication. Mechanistically, viral nucleo capsid protein drives DGAT1/2 gene expression to facilitate LD formation and associates with ADRP on the LD surface to complete the viral replication cycle. DGAT gene depletion reduces SARS-CoV-2 protein synthesis without compromising viral genome replication/transcription. Importantly, a cheap and orally available DGAT inhibitor, xanthohumol, was found to suppress SARS-CoV-2 replication and the associated pulmonary inflammation in a hamster model. Our findings not only uncovered the mechanistic role of SARS-CoV-2 nucleocapsid protein to exploit LDs-oriented network for heightened metabolic demand, but also the potential to target the LDs-synthetase DGAT and LDs-stabilizer ADRP for COVID-19 treatment.

12.
Comput Struct Biotechnol J ; 19: 5568-5577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712400

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes severe infection in humans characterized by an acute febrile illness with thrombocytopenia and hemorrhagic complications, and a mortality rate of up to 30%. Understanding on virus-host protein interactions may facilitate the identification of druggable antiviral targets. Herein, we utilized liquid chromatography-tandem mass spectrometry to characterize the SFTSV interactome in human embryonic kidney-derived permanent culture (HEK-293T) cells. We identified 445 host proteins that co-precipitated with the viral glycoprotein N, glycoprotein C, nucleoprotein, or nonstructural protein. A network of SFTSV-host protein interactions based on reduced viral fitness affected upon host factor down-regulation was then generated. Screening of the DrugBank database revealed numerous drug compounds that inhibited the prioritized host factors in this SFTSV interactome. Among these drug compounds, the clinically approved artenimol (an antimalarial) and omacetaxine mepesuccinate (a cephalotaxine) were found to exhibit anti-SFTSV activity in vitro. The higher selectivity of artenimol (71.83) than omacetaxine mepesuccinate (8.00) highlights artenimol's potential for further antiviral development. Mechanistic evaluation showed that artenimol interfered with the interaction between the SFTSV nucleoprotein and the host glucose-6-phosphate isomerase (GPI), and that omacetaxine mepesuccinate interfered with the interaction between the viral nucleoprotein with the host ribosomal protein L3 (RPL3). In summary, the novel interactomic data in this study revealed the virus-host protein interactions in SFTSV infection and facilitated the discovery of potential anti-SFTSV treatments.

13.
Viruses ; 13(10)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34696477

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus in Asia that causes severe disease. Despite its clinical importance, treatment options for SFTSV infection remains limited. The SFTSV glycoprotein Gn plays a major role in mediating virus entry into host cells and is therefore a potential antiviral target. In this study, we employed an in silico structure-based strategy to design novel cyclic antiviral peptides that target the SFTSV glycoprotein Gn. Among the cyclic peptides, HKU-P1 potently neutralizes the SFTSV virion. Combinatorial treatment with HKU-P1 and the broad-spectrum viral RNA-dependent RNA polymerase inhibitor favipiravir exhibited synergistic antiviral effects in vitro. The in silico peptide design platform in this study may facilitate the generation of novel antiviral peptides for other emerging viruses.


Asunto(s)
Péptidos/farmacología , Phlebovirus/efectos de los fármacos , Síndrome de Trombocitopenia Febril Grave/tratamiento farmacológico , Antivirales/farmacología , Infecciones por Bunyaviridae/virología , Línea Celular , Línea Celular Tumoral , Simulación por Computador , Hong Kong , Humanos , Orthobunyavirus/patogenicidad , Phlebovirus/patogenicidad , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Trombocitopenia/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos
14.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907519

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Animales , Células CACO-2 , Chlorocebus aethiops , Simulación por Computador , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasas/química , Células Vero
15.
Nature ; 593(7859): 418-423, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727703

RESUMEN

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Asunto(s)
Antivirales/farmacología , Clofazimina/farmacología , Coronavirus/clasificación , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacocinética , Antivirales/uso terapéutico , Disponibilidad Biológica , Fusión Celular , Línea Celular , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Coronavirus/crecimiento & desarrollo , Coronavirus/patogenicidad , Cricetinae , ADN Helicasas/antagonistas & inhibidores , Sinergismo Farmacológico , Femenino , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Mesocricetus , Profilaxis Pre-Exposición , SARS-CoV-2/crecimiento & desarrollo , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
16.
Res Sq ; 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33052331

RESUMEN

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.

17.
Cell Rep Med ; 1(7): 100121, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32984855

RESUMEN

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is transmitted largely by respiratory droplets or airborne aerosols. Despite being frequently found in the immediate environment and feces of patients, evidence supporting the oral acquisition of SARS-CoV-2 is unavailable. Using the Syrian hamster model, we demonstrate that the severity of pneumonia induced by the intranasal inhalation of SARS-CoV-2 increases with virus inoculum. SARS-CoV-2 retains its infectivity in vitro in simulated human-fed-gastric and fasted-intestinal fluid after 2 h. Oral inoculation with the highest intranasal inoculum (105 PFUs) causes mild pneumonia in 67% (4/6) of the animals, with no weight loss. The lung histopathology score and viral load are significantly lower than those infected by the lowest intranasal inoculum (100 PFUs). However, 83% of the oral infections (10/12 hamsters) have a level of detectable viral shedding from oral swabs and feces similar to that of intranasally infected hamsters. Our findings indicate that the oral acquisition of SARS-CoV-2 can establish subclinical respiratory infection with less efficiency.


Asunto(s)
Infecciones Asintomáticas , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/fisiología , Esparcimiento de Virus , Animales , COVID-19/inmunología , COVID-19/patología , Cricetinae , Citocinas/metabolismo , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Humanos , Inflamación , Pulmón/patología , Pulmón/virología , Mesocricetus , Índice de Severidad de la Enfermedad , Carga Viral
18.
Sci Adv ; 6(35): eaba7910, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923629

RESUMEN

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antivirales/farmacología , Cinamatos/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , Gripe Humana/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , ortoaminobenzoatos/farmacología , Células A549 , Animales , Betacoronavirus/efectos de los fármacos , Sitios de Unión/genética , COVID-19 , Línea Celular Tumoral , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Perros , Células HEK293 , Infecciones por VIH/patología , VIH-1/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Pandemias , Neumonía Viral/patología , Unión Proteica/genética , Transporte de Proteínas/efectos de los fármacos , ARN Viral/genética , Receptor de Interferón alfa y beta/genética , SARS-CoV-2 , Factor de Crecimiento Transformador beta1/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/patología
19.
Metabolites ; 10(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717953

RESUMEN

Enterovirus A71 (EV-A71) is a common cause of hand, foot, and mouth disease. Severe EV-A71 infections may be associated with life-threatening neurological complications. However, the pathogenic mechanisms underlying these severe clinical and pathological features remain incompletely understood. Metabolites are known to play critical roles in multiple stages of the replication cycles of viruses. The metabolic reprogramming induced by viral infections is essential for optimal virus replication and may be potential antiviral targets. In this study, we applied targeted metabolomics profiling to investigate the metabolic changes of induced pluripotent human stem cell (iPSC)-derived neural progenitor cells (NPCs) upon EV-A71 infection. A targeted quantitation of polar metabolites identified 14 candidates with altered expression profiles. A pathway enrichment analysis pinpointed glucose metabolic pathways as being highly perturbed upon EV-A71 infection. Gene silencing of one of the key enzymes of glycolysis, 6-phosphofructo-2-kinase (PFKFB3), significantly suppressed EV-A71 replication in vitro. Collectively, we demonstrated the feasibility to manipulate EV-A71-triggered host metabolic reprogramming as a potential anti-EV-A71 strategy.

20.
Viruses ; 12(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532085

RESUMEN

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Antígenos Virales/inmunología , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Humanos , Interferones/metabolismo , Lipogénesis/efectos de los fármacos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Células Vero , Carga Viral/efectos de los fármacos , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...