Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Article En | MEDLINE | ID: mdl-38071756

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Mass Spectrometry , Lipidomics , Pharmaceutical Preparations , Proteomics , Congresses as Topic
2.
Biomed Chromatogr ; 38(3): e5759, 2024 Mar.
Article En | MEDLINE | ID: mdl-37845809

Matrix effect (ME) is commonly caused by coelution of compounds with target analytes, resulting in either suppression or enhancement of analyte ionization. Thus, to achieve the desired accuracy, precision, and sensitivity, ME needs to be evaluated and controlled during bioanalytical method development. As the application of supercritical fluid chromatography-mass spectrometry (SFC-MS) for analysis of biological samples has increased, ME using SFC-MS has also been investigated with a focus on the difference in ME in SFC-MS compared to other chromatographic techniques used for achiral separation in biological samples. Here, we provide a summary of the status of ME evaluation and mitigation in SFC-MS methods. This review presents an overview of the phenomenon of ME and methods for evaluating ME in bioanalysis. Next, the factors that can impact ME in SFC-MS-based bioanalytical methods are discussed in detail with an emphasis on SFC. A literature review of the evaluation of ME in targeted bioanalytical methods using SFC-MS is included at the end. Robust instrumentation, effective sample preparation, and superb separation selectivity are the foundations of reliable analytical methods as well as the ability to mitigate detrimental ME in SFC-MS methods.


Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Liquid Chromatography-Mass Spectrometry
3.
Biomed Chromatogr ; 38(1): e5766, 2024 Jan.
Article En | MEDLINE | ID: mdl-37920134

During bioanalytical assay development and validation, maintaining the stability of the parent drug and metabolites of interest is critical. While stability of the parent drug has been thoroughly investigated, the stability of unanalyzed metabolites is often overlooked. When an unstable metabolite is known or suspected to interfere with measurement of the parent drug or other metabolites of interest through back-conversion or other routes, additional tests with these unstable metabolites should be conducted. Here, the development and validation of two assays for quantification of rosuvastatin, one in human plasma and one in human urine, was reported. To this end, additional sets of quality control samples were added during assay validation to ensure the reliability of the assays. Acid treatment of samples is shown to be necessary for rosuvastatin quantification. In this regard, stability issues caused by the metabolite, rosuvastatin lactone, may have been overlooked if assay development and validation had only considered the parent drug, rosuvastatin. These assays represent a case study for how to develop and validate assays with unstable metabolites. Taken together, unstable metabolites should be included in all applicable stability tests.


Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Humans , Rosuvastatin Calcium , Chromatography, Liquid , Reproducibility of Results
4.
Biomed Chromatogr ; 37(10): e5713, 2023 Oct.
Article En | MEDLINE | ID: mdl-37544926

In pharmacokinetic studies for respiratory diseases, urea is a commonly used dilution marker for volume normalization of various biological matrices, owing to the fact that urea diffuses freely throughout the body and is minimally affected by disease states. In this study, we developed a convenient liquid chromatography-tandem mass spectrometry (LC-MS/MS) surrogate matrix assay for accurate urea quantitation in plasma, serum and epithelial lining fluid. Different mass spectrometer platforms and ionization modes were compared in parallel. The LC method and mass spectrometer parameters were comprehensively optimized to reduce interferences, to smooth the baseline and to maximize the signal-to-noise ratio. Saline was selected as the surrogate matrix, and its suitability was confirmed by good parallelism and accurate quality control sample measurements. Reliable and robust assay performance was demonstrated by precision and accuracy, dilution integrity, sensitivity, recovery and stability, all of which met bioanalysis requirements to support clinical studies. The assay performance was also verified and better understood by comparing it with a colorimetric assay and to a surrogate analyte assay. The newly developed surrogate matrix assay has the potential to be further expanded for urea quantitation in numerous physiological matrices.


Respiratory Tract Diseases , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Quality Control , Urea , Reproducibility of Results
5.
Mol Cell Proteomics ; 22(6): 100559, 2023 Jun.
Article En | MEDLINE | ID: mdl-37105363

The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).


Mass Spectrometry , Societies, Scientific , Humans , China , Pharmaceutical Preparations , Proteomics , United States
6.
Eur Arch Otorhinolaryngol ; 280(5): 2435-2443, 2023 May.
Article En | MEDLINE | ID: mdl-36646937

OBJECTIVE: Bariatric surgery (BS) is considered one of the most effective treatments for obese individuals with Obstructive Sleep Apnea (OSA). However, otolaryngologists have raised concerns about the structural alterations caused by BS on the upper respiratory tract, especially, on the pharyngeal cavity. METHODS: In this study, we recruited 42 individuals who underwent BS at our hospital. They were divided into two groups based on apnea-hypopnea index (AHI): mild group (5 ≤ AHI < 15) and moderate-severe group (AHI ≥ 15). The participants were followed up for 12 months and several indicators, including body mass index (BMI), polysomnography (PSG), and acoustic pharyngometry (APh), were assessed repeatedly before surgery and at 3, 6, and 12 months (m) after surgery. RESULTS: Participants exhibited significant decreases in BMI (F = 128.1, P = 0.001) and total weight loss (F = 176.7, P < 0.001) after BS. The AHI value among obese patients with mild OSA decreased significantly within three months after surgery (0 day vs. 3 months, P < 0.01), and decreased significantly more than 12 months with moderate-to-severe patients (0 day vs. 3 months, 3 months vs. 6 months, 6 months vs. 12 months, P < 0.01). The therapeutic effect of OSA of the mild group was significantly better compared with that of the moderate-severe group at 6 months (mean rank = 28.13 vs. 14.21, P < 0.001) and 12 m (mean rank = 26.75 vs. 15.52, P = 0.001). The APh results revealed that the pharyngeal volume of the two groups increased significantly between 0 day and 6 months after surgery (P < 0.01). The oropharyngeal junction (OPJ) area and the glottal area were increased significantly between 0 day and 6 m after surgery (P < 0.01). CONCLUSION: BS can relieve apnea and OSA symptoms among obese patients with OSA, especially in the early postoperative period. Moreover, OSA severity was closely associated with OPJ and glottal areas, rather than pharyngeal cavity volume.


Bariatric Surgery , Sleep Apnea, Obstructive , Humans , Obesity/complications , Obesity/surgery , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/surgery , Sleep Apnea, Obstructive/diagnosis , Bariatric Surgery/adverse effects , Pharynx/surgery , Postoperative Period
7.
Biomed Chromatogr ; 37(3): e5554, 2023 Mar.
Article En | MEDLINE | ID: mdl-36417291

Microsampling technology for dried blood-derived samples provides an advantageous alternative to conventional venous blood for drug quantitation. Unlike conventional whole blood microsampling techniques, Noviplex is a novel, card-based technology for rapid dried plasma spot collection that retains the benefits of microsampling during collection and transportation, while avoiding the disadvantages of using whole blood samples. Giredestrant is a promising small-molecule therapeutic agent under development by Genentech to treat patients with estrogen receptor-positive breast cancer. In this study, we investigated the feasibility of using Noviplex cards for pharmacokinetic analysis of giredestrant levels in human plasma, including optimizing extraction recovery, evaluating in-card stability, and assessing batch precision and accuracy. We found that while the Noviplex card demonstrated levels of sensitivity, extraction recovery, and stability at ambient temperature that meet the requirements of pharmacokinetic analysis for clinical studies, further optimization of the filtration layers within the Noviplex card is necessary to improve filtration efficiency and consistency. This study reveals the possibilities as well as the limitations of the Noviplex card and provides a better understanding of the capabilities and risks of using the Noviplex card for drug quantitation in plasma.


Dried Blood Spot Testing , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Dried Blood Spot Testing/methods
8.
Toxicol Appl Pharmacol ; 443: 116008, 2022 05 15.
Article En | MEDLINE | ID: mdl-35378153

The use of bile acids as functional biomarkers for hepatobiliary injury and disease has been proposed for decades, but the utility has been generally limited due to lack of sensitivity in diagnosis and assay availability. However, recent advances in liquid chromatography and mass spectrometry have allowed for highly sensitive profiling of individual bile acids across several different matrices. In the current work, a panel of 54 bile acids were quantified in plasma by high resolution mass spectrometry in the common species used for preclinical toxicity studies, including rat (both Wistar and Sprague-Dawley strains), Beagle dog, Cynomolgus macaque monkey, and New Zealand White rabbit. In each species, blood draws were collected across three days in such a way to derive overall interpretations of: 1) biological variability across species, 2) sex differences, 3) diurnal fluctuations in the bile acid pool (including over light/dark cycles), and 4) changes due to fed or fasting state. Various methods of normalization were applied to the dataset to overcome notable inter-individual variability in bile acid concentrations to allow for better data derivations and interpretation. As such, the current work elucidates not only key differences in the bile acid pool across species, but also informs best practices in protocol design and analytical methods for interpreting large sets of bile acid data. When taken together, these data facilitate better species translation and application of bile acids as biomarkers for hepatobiliary injury and disease.


Bile Acids and Salts , Chemical and Drug Induced Liver Injury , Animals , Biomarkers , Dogs , Female , Macaca fascicularis , Male , Rabbits , Rats , Rats, Sprague-Dawley , Rats, Wistar
9.
Biomed Chromatogr ; 36(5): e5348, 2022 May.
Article En | MEDLINE | ID: mdl-35083760

Chinese hamster ovary (CHO) cells have been widely used in the biopharmaceutical industry for production of therapeutic proteins. CHO cells in fed-batch cultures produce various amino acid-derived intermediate metabolites. These small molecule metabolic byproducts have proven to be critical to cell growth, culture performance, and, more interestingly, antibody drug productivity. Herein, we developed an LC-HRMS-based targeted metabolomics approach for comprehensive quantification of total 21 growth inhibition-related metabolites generated from 14 different amino acids in CHO cell fed-batch cultures. High throughput derivatization procedures, matrix-matched calibration curves, stable isotope-labeled internal standards, and accurate mass full MS scan were utilized to achieve our goal for a wide range of metabolite screening as well as validity and reliability of metabolite quantification. We further present a novel analytical strategy for extending the assay's dynamic range by utilizing naturally occurring isotope M + 1 ion as a quantification analog in the circumstances where the principal M ion is beyond its calibration range. The integrated method was qualified for selectivity, sensitivity, linearity, accuracy, precision, isotope analysis, and other analytical aspects to demonstrate assay robustness. We then applied this metabolomics approach to characterize metabolites of interest in a CHO cell-based monoclonal antibody (mAb) production process with fed-batch bioreactor culture mode. Absolute quantification combined with multivariate statistical analysis illustrated that our target analytes derived from amino acids, especially from branched-chain amino acids, closely correlated with cell viability and significantly differentiated cellular stages in production process.


Batch Cell Culture Techniques , Metabolomics , Amino Acids/metabolism , Animals , Antibodies, Monoclonal , CHO Cells , Cricetinae , Cricetulus , Reproducibility of Results
10.
Bioanalysis ; 14(21): 1377-1389, 2022 Nov.
Article En | MEDLINE | ID: mdl-36655682

Volumetric absorption microsampling devices offer minimally invasive and user-friendly collection of capillary blood in volumes as low as 10 µl. Herein we describe the assay validation for determination of the selective estrogen receptor degrader giredestrant (GDC-9545) in dried human whole blood collected using the Mitra® and Tasso-M20 devices. Both LC-MS/MS assays met validation acceptance criteria for the linear range 1-1000 ng/ml giredestrant. Mitra and Tasso-M20 samples were stable for 84 and 28 days at ambient conditions, respectively, and for 7-9 days at 40 and -70°C. Blood hematocrit, hyperlipidemia and anticoagulant did not impact quantitation of giredestrant. These validated assays are suitable for the determination of giredestrant in dried blood samples collected using Mitra and Tasso-M20 microsampling devices.


Blood Specimen Collection , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Hematocrit , Dried Blood Spot Testing
11.
Drug Discov Today Technol ; 40: 69-75, 2021 Dec.
Article En | MEDLINE | ID: mdl-34916026

In this paper, we review the growing development and applications of supercritical fluid chromatography-mass spectrometry (SFC-MS) for the analysis of small molecular analytes and biomarkers in drug discovery. As an alternative chromatographic technique, SFC instrumentation and methodology have dramatically advanced over the last decade. Mass spectrometry (MS) provides the powerful detection capability as it couples with SFC. A growing number of SFC-MS/MS applications were reported over the last decade and the application areas of SFC-MS/MS is rapidly expanding. The first part of this review is devoted to the different aspects of SFC-MS development and recent technological advancements. In the second part of this review, we highlight the recent application areas in pharmaceutical research and development.


Chromatography, Supercritical Fluid , Pharmaceutical Preparations , Chromatography, Liquid , Research , Tandem Mass Spectrometry
12.
Article Zh | MEDLINE | ID: mdl-34304515

Objective:To study whether and how bariatric surgery changes the structure of the pharyngeal cavity in obese patients with obstructive sleep apnea(OSA). Methods:Forty-two patients who underwent laparoscopic sleeve gastrectomy were recruited. Morphological indicators(BMI, neck and waist circumference), PSG and acoustic pharyngometry indicators were evaluated pre-operatively and 3, 6, and 12 months post-operatively. Results:All indicators including morphology, pharyngeal cavity structure and OSA severity changed significantly after surgery. Among them, BMI, neck circumference, waist circumference and AHI value were significantly reduced(P<0.001), while pharyngeal cavity volume, pharynx volume, oropharyngeal junction area, glottis area and LSaO2 increased significantly(P<0.001). The results of multiple comparisons showed that BMI, neck and waist circumference decreased significantly in the first 6 months, and no further decline occurred during 6 to 12 months postoperatively. The decrease in AHI and LSaO2 mainly occurred within the first 3 months postoperatively, while there was no statistically significant difference in these two indicatiors between 3 months vs. 6 months, 6 months vs. 12 months postoperatively. The area of the oropharyngeal junction increased significantly within 0 to 3 months after surgery, while the volume of the pharyngeal cavity and the area of the glottis increased at 6 months and 12 months after surgery. Conclusion:Bariatric surgery can significantly reduce body weight and reduce fat accumulation in the neck. It can also enlarge the volume and cross-sectional area of the pharyngeal cavity, and improve upper airway obstruction, therefore reduce the symptoms of sleep apnea in obese patients with OSA to a certain extent.


Bariatric Surgery , Sleep Apnea, Obstructive , Humans , Neck/surgery , Obesity/complications , Obesity/surgery , Pharynx/surgery , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/surgery
13.
J Am Soc Mass Spectrom ; 32(8): 2033-2049, 2021 Aug 04.
Article En | MEDLINE | ID: mdl-33826317

Bile acids (BAs) are biomolecules synthesized in the liver from cholesterol and are constituents of bile. The in-vivo BA pool includes more than 50 known diverse BAs which are unconjugated, amino acid conjugated, sulfated, and glucuronidated metabolites. Hemostasis of bile acids is known to be highly regulated and an interplay between liver metabolism, gut microbiome function, intestinal absorption, and enterohepatic recirculation. Interruption of BA homeostasis has been attributed to several metabolic diseases and drug induced liver injury (DILI), and their use as potential biomarkers is increasingly becoming important. Speciated quantitative and comprehensive profiling of BAs in various biomatrices from humans and preclinical animal species are important to understand their significance and biological function. Consequently, a versatile one single bioanalytical method for BAs is required to accommodate quantitation in a broad range of biomatrices from human and preclinical animal species. Here we report a versatile, comprehensive, and high throughput liquid chromatography-high resolution mass spectrometry (LC-HRMS) targeted metabolomics method for quantitative analysis of 50 different BAs in multiple matrices including human serum, plasma, and urine and plasma and urine of preclinical animal species (rat, rabbit, dog, and monkey). The method has been sufficiently qualified for accuracy, precision, robustness, and ruggedness and addresses the issue of nonspecific binding of bile acids to plastic for urine samples. Application of this method includes comparison for BA analysis between matched plasma and serum samples, human and animal species differences in BA pools, data analysis, and visualization of complex BA data using BA indices or ratios to understand BA biology, metabolism, and transport.


Bile Acids and Salts/blood , Bile Acids and Salts/urine , Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Animals , Bile Acids and Salts/metabolism , Blood Chemical Analysis/methods , Dogs , Haplorhini , Humans , Rabbits , Rats , Reproducibility of Results , Sensitivity and Specificity , Serum/chemistry , Sulfates , Urinalysis/methods
14.
Drug Metab Dispos ; 48(5): 408-419, 2020 05.
Article En | MEDLINE | ID: mdl-32132091

The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti-cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR K i were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 µg/kg in rabbits, its plasma terminal half-lives (t 1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 µg per eye in rabbits, its apparent t 1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 µg per eye in rabbits, the t 1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t 1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t 1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT: GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti-choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t 1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t 1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.


Angiogenesis Inhibitors/pharmacology , Choroidal Neovascularization/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/pathology , Disease Models, Animal , Half-Life , Human Umbilical Vein Endothelial Cells , Humans , Injections, Intravenous , Intravitreal Injections , Male , Models, Biological , Ophthalmic Solutions/pharmacology , Ophthalmic Solutions/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Rabbits , Rats , Solubility , TOR Serine-Threonine Kinases/metabolism , Tissue Distribution
16.
Drug Metab Dispos ; 48(1): 18-24, 2020 01.
Article En | MEDLINE | ID: mdl-31699807

Generating accurate in vitro data is crucial for in vitro to in vivo extrapolation and pharmacokinetic predictions. The use of human embryonic kidney (HEK) 293 cells overexpressing organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 in protein-free buffer and 100% human plasma incubations was explored for the uptake of four OATP substrates: pravastatin, rosuvastatin, repaglinide, and pitavastatin. Differences were observed for each parameter [unbound Michaelis constant (K m,u), V max, intrinsic clearance (CLint), and unbound passive diffusion Pdif,u] obtained from the buffer and plasma incubations in both cells, and the fold differences were greatest for the highly protein bound compounds. The fold change in K m,u values ranged from 1.91 to 619, and the fold change in V max values ranged from 1.22 to 97.4. As a result, in both cells, the CLint values generated in the plasma incubations were higher by 0.762- to 31.7-fold than the values generated in the protein-free buffer. The passive diffusion was also higher in the plasma incubations for all four compounds, with a fold difference range of 1.73-23.4. These shifts in the presence and absence of human plasma suggest that plasma proteins may play a role in both the active uptake and passive diffusion processes. The results also support the idea of a transporter-induced protein-binding shift, where high protein binding may not limit the uptake of compounds that have high affinity for transporters. The addition of plasma to incubations leading to higher CLint values for transporter substrates helps mitigate the underprediction commonly noted with in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: The current investigation brings a new perspective on how to mitigate the underprediction commonly noted with in vitro to in vivo extrapolation for OATP substrates by using HEK293 cells overexpressing OATP1B1 and OATP1B3. It also supports the idea of a transporter-induced protein-binding shift, where high protein binding may not limit the uptake of compounds that have high affinity for transporters.


Blood Proteins/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Cell Culture Techniques , Culture Media , HEK293 Cells , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Pravastatin/metabolism , Protein Binding , Quinolines/metabolism , Rosuvastatin Calcium/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Substrate Specificity
17.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Article En | MEDLINE | ID: mdl-31585081

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/therapy , Mast Cells/enzymology , Mast Cells/immunology , Tryptases/antagonists & inhibitors , Tryptases/immunology , Adolescent , Allosteric Regulation/immunology , Animals , Cell Line , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Rabbits
18.
Br J Clin Pharmacol ; 85(8): 1751-1760, 2019 08.
Article En | MEDLINE | ID: mdl-30973970

AIMS: Navoximod (GDC-0919, NLG-919) is a small molecule inhibitor of indoleamine-2,3-dioxygenase 1 (IDO1), developed to treat the acquired immune tolerance associated with cancer. The primary objectives of this study were to assess navoximod's absolute bioavailability (aBA), determine the mass balance and routes of elimination of [14 C]-navoximod, and characterize navoximod's metabolite profile. METHODS: A phase 1, open-label, two-part study was conducted in healthy volunteers. In Part 1 (aBA), subjects (n = 16) were randomized to receive oral (200 mg tablet) or intravenous (5 mg solution) navoximod in a crossover design with a 5-day washout. In Part 2 (mass balance), subjects (n = 8) were administered [14 C]-navoximod (200 mg/600 µCi) as an oral solution. RESULTS: The aBA of navoximod was estimated to be 55.5%, with a geometric mean (%CV) plasma clearance and volume of distribution of 62.0 L/h (21.0%) and 1120 L (28.4%), respectively. Mean recovery of total radioactivity was 87.8%, with 80.4% detected in urine and the remainder (7.4%) in faeces. Navoximod was extensively metabolized, with unchanged navoximod representing 5.45% of the dose recovered in the urine and faeces. Glucuronidation was identified as the primary route of metabolism, with the major glucuronide metabolite, M28, accounting for 57.5% of the total drug-derived exposure and 59.7% of the administered dose recovered in urine. CONCLUSIONS: Navoximod was well tolerated, quickly absorbed and showed moderate bioavailability, with minimal recovery of the dose as unchanged parent in the urine and faeces. Metabolism was identified as the primary route of clearance and navoximod glucuronide (M28) was the most abundant metabolite in circulation with all other metabolites accounting for <10% of drug-related exposure.


Imidazoles/pharmacokinetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacokinetics , Administration, Intravenous , Administration, Oral , Adult , Biological Availability , Cross-Over Studies , Female , Healthy Volunteers , Humans , Imidazoles/administration & dosage , Indoles/administration & dosage , Intestinal Elimination , Male , Metabolic Clearance Rate , Middle Aged , Neoplasms/drug therapy , Neoplasms/immunology , Renal Elimination , Tumor Escape/drug effects , Young Adult
19.
J Colloid Interface Sci ; 542: 441-450, 2019 Apr 15.
Article En | MEDLINE | ID: mdl-30772507

Hematite (α-Fe2O3) is the most promising photoanode with a high theoretical photocurrent of 12.6 mA cm-2. However, the photocurrent of Fe2O3 achieved now is far below its theoretical value, which is mainly due to its poor electronic conductivity and sluggish water oxidation kinetics. Herein, a co-doping method by sequential in-situ Ti-doping and ex-situ Mg-doping is used to tailor the surface states of Fe2O3 photoanode for great improvement of the charge transfer at the interface and the followed transport ability by the suppressed charge recombination, resulting in about 11-folds and 6.5 times higher than that of the undoped Fe2O3 and Ti:Fe2O3 at 1.23 V vs. RHE, respectively. This is mainly due to Mg and Ti-doping into Fe2O3 modifying the electrode surface states for more holes participation in water oxidation and better kinetics that enhanced charge transfer and suppressed charge recombination for the efficient water oxidation.

20.
Bioanalysis ; 11(4): 251-266, 2019 Feb.
Article En | MEDLINE | ID: mdl-30672314

Aim: The applicability of polysaccharide-based chiral stationary phases in modern supercritical fluid chromatography (SFC)-MS/MS for chiral bioanalysis was evaluated. Materials & methods: Ten popular polysaccharide-based chiral stationary phases (CSPs) were tested using a set of 23 drugs against three cosolvents. The effect of temperature and backpressure on separation was examined. Results: The recommended order of CSPs for screening was determined. Methanol with 0.1% NH4OH is proven to be the first choice of cosolvent. Temperature of 40°C and backpressure of 10 or 15 MPa are recommended starting conditions. Phospholipid elution profiles on the polysaccharide-based CSPs were reported for the first time under SFC conditions. Conclusion: A simplified screening protocol with straightforward method optimization approaches was generated for SFC chiral assay development in a reasonable time frame with a high success rate.

...