Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Med Biol Res ; 57: e13409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38958367

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality by a single infectious agent in the world. M. tuberculosis infection could also result in clinical chronic infection, known as latent TB infection (LTBI). Compared to the current limited treatment, several subunit vaccines showed immunotherapeutic effects and were included in clinical trials. In this study, a subunit vaccine of Ag85B with a novel mucosal adjuvant c-di-AMP (Ag85B:c-di-AMP) was delivered intranasally to a persistent M. tuberculosis H37Ra infection mouse model, which also presented the asymptomatic characteristics of LTBI. Compared with Ag85B immunization, Ag85B:c-di-AMP vaccination induced stronger humoral immune responses, significantly higher CD4+ T cells recruitment, enhanced Th1/Th2/Th17 profile response in the lung, decreased pathological lesions of the lung, and reduced M. tuberculosis load in mice. Taken together, Ag85B:c-di-AMP mucosal route immunization provided an immunotherapeutic effect on persistent M. tuberculosis H37Ra infection, and c-di-AMP, as a promising potential mucosal adjuvant, could be further used in therapeutic or prophylactic vaccine strategies for persistent M. tuberculosis infection as well as LTBI.


Asunto(s)
Adyuvantes Inmunológicos , Modelos Animales de Enfermedad , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Animales , Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Mycobacterium tuberculosis/inmunología , Ratones , Femenino , Antígenos Bacterianos/inmunología , Aciltransferasas/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Proteínas Bacterianas/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Tuberculosis Latente/inmunología , Ratones Endogámicos BALB C , Administración Intranasal
2.
Braz. j. med. biol. res ; 57: e13409, fev.2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564163

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality by a single infectious agent in the world. M. tuberculosis infection could also result in clinical chronic infection, known as latent TB infection (LTBI). Compared to the current limited treatment, several subunit vaccines showed immunotherapeutic effects and were included in clinical trials. In this study, a subunit vaccine of Ag85B with a novel mucosal adjuvant c-di-AMP (Ag85B:c-di-AMP) was delivered intranasally to a persistent M. tuberculosis H37Ra infection mouse model, which also presented the asymptomatic characteristics of LTBI. Compared with Ag85B immunization, Ag85B:c-di-AMP vaccination induced stronger humoral immune responses, significantly higher CD4+ T cells recruitment, enhanced Th1/Th2/Th17 profile response in the lung, decreased pathological lesions of the lung, and reduced M. tuberculosis load in mice. Taken together, Ag85B:c-di-AMP mucosal route immunization provided an immunotherapeutic effect on persistent M. tuberculosis H37Ra infection, and c-di-AMP, as a promising potential mucosal adjuvant, could be further used in therapeutic or prophylactic vaccine strategies for persistent M. tuberculosis infection as well as LTBI.

3.
Crit Care Med ; 44(12): e1219-e1225, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27495821

RESUMEN

OBJECTIVES: Our previous studies indicated that highly selective κ opioid receptor agonists could protect the brain, indicating an important role of κ opioid receptor agonist in brain ischemia. In this study, we investigated the role and related mechanisms of κ opioid receptor agonists in brain ischemia in a middle cerebral artery occlusion mouse model. DESIGN: Animal model. SETTING: Laboratory. SUBJECTS: The middle cerebral artery occlusion model was established by 120 minutes of ischemia followed by 24-hour reperfusion in male adult mice. INTERVENTIONS: Various doses of salvinorin A, a highly selective and potent κ opioid receptor agonist, were administered intranasally 10 minutes after initiation of reperfusion. Norbinaltorphimine (2.5 mg/kg, IP) as a κ opioid receptor antagonist was administered in one group before administration of salvinorin A (50µg/kg) to investigate the specific role of κ opioid receptor. MEASUREMENTS AND MAIN RESULTS: Infarct volume, κ opioid receptor expression, and Evans blue extravasation in the brain, and neurobehavioral outcome were determined. Immunohistochemistry and western blot were performed to detect the activated caspase-3, interleukin-10, and tumor necrosis factor-α levels to investigate the role of apoptosis and inflammation. κ opioid receptor expression was elevated significantly in the ischemic penumbral area compared with that in the nonischemic area. Salvinorin A reduced infarct volume and improved neurologic deficits dose-dependently. Salvinorin A at the dose of 50 µg/kg reduced Evans blue extravasation, suggesting reduced impairment of the blood-brain barrier and decreased the expression of cleaved caspase-3, interleukin-10, and tumor necrosis factor-α in the penumbral areas. All these changes were blocked or alleviated by norbinaltorphimine. CONCLUSIONS: κ opioid receptors were up-regulated and played a critical role in brain ischemia and reperfusion. κ opioid receptor activation could potentially protect the brain and improve neurologic outcome via blood-brain barrier protection, apoptosis reduction, and inflammation inhibition.


Asunto(s)
Isquemia Encefálica/fisiopatología , Receptores Opioides kappa/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Diterpenos de Tipo Clerodano/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacología , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inhibidores , Daño por Reperfusión/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA