Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Hazard Mater ; 470: 134237, 2024 May 15.
Article En | MEDLINE | ID: mdl-38593662

Ti-based MOFs exhibit ultra-high stability in radioactive waste gases containing nitrogen oxides (NOX) and are effective in capturing radioactive iodine. In this study, NH2-MIL-125 was synthesized via a one-pot solvothermal method and its adsorption performance for iodine was investigated using batch adsorption experiments, the stability of materials was tested by simulating post-processing conditions. The results indicated that NH2-MIL-125 had a maximum iodine adsorption capacity of 1.61 g/g at 75 â„ƒ and reached adsorption equilibrium within 60 min, and the adsorption capacity of methyl iodine reached 776.9 mg/g. The material also exhibited excellent stability and iodine adsorption performance in the presence of NOX. After soaking in NO2 for 24 h, its structure remained stable and the adsorption capacity for iodine remained at 231.5 mg/g. The excellent co-adsorption performance of NH2-MIL-125 on iodine and NOX was attributed to the synergistic effects of Ti-OH groups and amino functional groups. These findings provide a reference for the capture of radioactive iodine and also demonstrate the potential of NH2-MIL-125 for iodine capture during spent fuel reprocessing.

...