Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virulence ; 12(1): 788-817, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33704021

RESUMEN

Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.


Asunto(s)
Mycoplasma/genética , Mycoplasma/patogenicidad , Factores de Virulencia/genética , Animales , Biopelículas/crecimiento & desarrollo , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones , Mycoplasma/inmunología , Fagocitosis , Virulencia
2.
Chem Biol Interact ; 306: 10-18, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30965051

RESUMEN

Exposure to Mycoplasma pneumoniae leads to lung inflammation through a host defense pathway. Increasing evidence has indicated that the mycoplasma-derived membrane lipoprotein, or its analogue macrophage-activating lipopeptide-2 (MALP-2), excretes LPS as an immune system-stimulating substance and plays a crucial role in pathological injury during M. pneumoniae infection. It has been established that Sulforaphane confers anti-inflammatory properties. However, the underlying mechanism responsible for the inhibitory actions of Sulforaphane in the context of mycoplasmal pneumoniae are poorly understood. Here, we report that Sulforaphane is an inducer of heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme through signaling pathways in human monocytes. Sulforaphane stimulated NF-E2-related factor 2 (Nrf2) translocation from the cytosol to the nucleus, and small interfering RNA-mediated knock-down of Nrf2 significantly inhibited Sulforaphane-induced HO-1 expression. Additionally, PI3K/Akt and ROS were also involved in Sulforaphane-induced Nrf2 activation and HO-1 expression, as revealed by the pharmacological inhibitors LY294002 and NAC. Moreover, Sulforaphane treatment inhibited MALP-2-induced pro-inflammatory cytokine secretion and pulmonary inflammation in mice, as well as MALP-2-triggered NF-κB activation. Furthermore, SnPP, a selective inhibitor of HO-1, reversed the inhibitory actions of Sulforaphane, while a carbon monoxide-releasing molecule, CORM-2, caused a significant decrease in MALP-2-induced cytokine secretion. Collectively, these results suggest that Sulforaphane functions as a suppressor of the MALP-2-induced inflammatory response, not only by inhibiting the expression of cytokines and the induction of HO-1 but also by diminishing NF-κB activation in cultured monocytes and the lungs of mice.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Hemo-Oxigenasa 1/metabolismo , Isotiocianatos/farmacología , Lipopéptidos/farmacología , Monocitos/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Monocitos/metabolismo , Relación Estructura-Actividad , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA