Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
ACS Appl Mater Interfaces ; 14(3): 3849-3863, 2022 Jan 26.
Article En | MEDLINE | ID: mdl-35019259

Nitric oxide (NO) is an endogenous gasotransmitter regulating alternative physiological processes in the cardiovascular system. To achieve translational application of NO, continued efforts are made on the development of orally active NO prodrugs for long-term treatment of chronic cardiovascular diseases. Herein, immobilization of NO-delivery [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) onto MIL-88B, a metal-organic framework (MOF) consisting of biocompatible Fe3+ and 1,4-benzenedicarboxylate (BDC), was performed to prepare a DNIC@MOF microrod for enhanced oral delivery of NO. In simulated gastric fluid, protonation of the BDC linker in DNIC@MOF initiates its transformation into a DNIC@tMOF microrod, which consisted of DNIC-2 well dispersed and confined within the BDC-based framework. Moreover, subsequent deprotonation of the BDC-based framework in DNIC@tMOF under simulated intestinal conditions promotes the release of DNIC-2 and NO. Of importance, this discovery of transformer-like DNIC@MOF provides a parallel insight into its stepwise transformation into DNIC@tMOF in the stomach followed by subsequent conversion into molecular DNIC-2 in the small intestine and release of NO in the bloodstream of mice. In comparison with acid-sensitive DNIC-2, oral administration of DNIC@MOF results in a 2.2-fold increase in the oral bioavailability of NO to 65.7% in mice and an effective reduction of systolic blood pressure (SBP) to a ΔSBP of 60.9 ± 4.7 mmHg in spontaneously hypertensive rats for 12 h.


Biocompatible Materials/pharmacology , Metal-Organic Frameworks/pharmacology , Nitric Oxide/chemistry , Prodrugs/pharmacology , Administration, Oral , Animals , Biocompatible Materials/administration & dosage , Blood Pressure/drug effects , Electrodes , Hydrogen-Ion Concentration , Materials Testing , Metal-Organic Frameworks/administration & dosage , Mice , Nitric Oxide/administration & dosage , Particle Size , Prodrugs/chemistry , Surface Properties
2.
ACS Appl Mater Interfaces ; 14(5): 6343-6357, 2022 Feb 09.
Article En | MEDLINE | ID: mdl-35080366

Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(µ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.


Ferrosoferric Oxide/chemistry , Magnetic Fields , Metal-Organic Frameworks/chemistry , Microspheres , Nitric Oxide/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Drug Carriers/chemistry , Escherichia coli/drug effects , Escherichia coli/physiology , Escherichia coli Infections/drug therapy , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/pharmacology , Nitric Oxide/therapeutic use , Skin/microbiology , Skin/pathology , Staphylococcus aureus/drug effects , Wound Healing/drug effects
3.
Gut ; 71(9): 1843-1855, 2022 09.
Article En | MEDLINE | ID: mdl-34921062

OBJECTIVE: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC. DESIGN: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC. We applied an in vitro-in vivo combinatorial phage display technique to identify novel peptide ligands to target the desmoplastic stroma in both murine and human orthotopic PDAC. We then constructed a stroma-targeted nanogel modified with phage display-identified tumour stroma-targeting peptides to co-deliver NO and TRAIL to PDAC and examined the anticancer effect in three-dimensional spheroid cultures in vitro and in orthotopic PDAC models in vivo. RESULTS: The delivery of NO to the PDAC tumour stroma resulted in reprogramming of activated pancreatic stellate cells, alleviation of tumour desmoplasia and downregulation of antiapoptotic BCL-2 protein expression, thereby facilitating tumour penetration by TRAIL and substantially enhancing the antitumour efficacy of TRAIL therapy. CONCLUSION: The co-delivery of TRAIL and NO by a stroma-targeted nanogel that remodels the fibrotic tumour microenvironment and suppresses tumour growth has the potential to be translated into a safe and promising treatment for PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/pathology , Humans , Mice , Nanogels , Nitric Oxide , Pancreatic Neoplasms/pathology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Tumor Microenvironment , Pancreatic Neoplasms
...