Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206971

RESUMEN

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Asunto(s)
Estudio de Asociación del Genoma Completo , Privacidad , Humanos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Programas Informáticos , Genómica
2.
New Phytol ; 238(4): 1479-1497, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36797656

RESUMEN

The acquisition of dormancy capabilities has enabled plants to survive in adverse terrestrial environmental conditions. Dormancy accumulation and release is coupled with light signaling, which is well studied in Arabidopsis, but it is unclear in the distant nonvascular relative. We study the characteristics and function on dormancy regulation of a blue light receptor cryptochrome in Marchantia polymorpha (MpCRY). Here, we identified MpCRY via bioinformatics and mutant complement analysis. The biochemical characteristics were assessed by multiple protein-binding assays. The function of MpCRY in gemma dormancy was clarified by overexpression and mutation of MpCRY, and its mechanism was analyzed via RNA sequencing and quantitative PCR analyses associated with hormone treatment. We found that the unique MpCRY protein in M. polymorpha undergoes both blue light-promoted interaction with itself (self-interaction) and blue light-dependent phosphorylation. MpCRY has the specific characteristics of blue light-induced nuclear localization and degradation. We further demonstrated that MpCRY transcriptionally represses abscisic acid (ABA) signaling-related gene expression to suppress gemma dormancy, which is dependent on blue light signaling. Our findings indicate that MpCRY possesses specific biochemical and molecular characteristics, and modulates ABA signaling under blue light conditions to regulate gemma dormancy in M. polymorpha.


Asunto(s)
Arabidopsis , Marchantia , Marchantia/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Plantas/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo
3.
J Exp Bot ; 74(3): 1090-1106, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36402548

RESUMEN

The induction of seed dormancy and its release involve a finely regulated genetic program controlled by various environmental and developmental cues that are critical for plant survival and population expansion. Light plays a key role in seed dormancy and germination, but the molecular mechanisms underlying the control of dormancy are unclear. In the present study, high-resolution temporal RNA-seq in Arabidopsis identified WOX11 as encoding a hub transcription factor during the seed dormancy induction and release stages. This gene might have evolved from gymnosperms and expanded in angiosperms with highly conserved expression patterns in seeds. WOX11 and its homolog WOX12 were highly expressed from 2 d after pollination, and mRNA abundance was greatly increased during the seed dormancy induction and release stages. Further, we found that WOX11 plays a role in the regulation of seed dormancy downstream of phytochrome B (PHYB)-mediated red-light signaling during the induction stage, indicating that WOX11/12 are newly identified components of red-light signaling transduction. Taken together, our results suggest that WOX11/12-mediated PHYB signaling regulates seed dormancy in Arabidopsis, and provide insights into the developmental regulation and evolutionary adaptation of plants to changes in the light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Homeodominio , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Latencia en las Plantas , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo
4.
J Integr Plant Biol ; 63(7): 1294-1308, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33570252

RESUMEN

Circular RNAs (circRNAs) are a recently discovered type of non-coding RNA derived from pre-mRNAs. R-loops consist of a DNA:RNA hybrid and the associated single-stranded DNA. In Arabidopsis thaliana, circRNA:DNA R-loops regulate alternative splicing (AS) of SEPALLATA3 (SEP3). However, the occurrence and functions of circRNAs and R-loops in Populus trichocarpa are largely unexplored. Here, we performed circRNA-enriched sequencing in the stem-differentiating xylem (SDX) of P. trichocarpa and identified 2,742 distinct circRNAs, including circ-CESA4, circ-IRX7, and circ-GUX1, which are generated from genes involved in cellulose, and hemicellulose biosynthesis, respectively. To investigate the roles of circRNAs in modulating alternative splicing (AS), we detected 7,836 AS events using PacBio Iso-Seq and identified 634 circRNAs that overlapped with 699 AS events. Furthermore, using DNA:RNA hybrid immunoprecipitation followed by sequencing (DRIP-seq), we identified 8,932 R-loop peaks that overlapped with 181 circRNAs and 672 AS events. Notably, several SDX-related circRNAs overlapped with R-loop peaks, pointing to their possible roles in modulating AS in SDX. Indeed, overexpressing circ-IRX7 increased the levels of R-loop structures and decreased the frequency of intron retention in linear IRX7 transcripts. This study provides a valuable R-loop atlas resource and uncovers the interplay between circRNAs and AS in SDX of P. trichocarpa.


Asunto(s)
Empalme Alternativo/fisiología , Populus/metabolismo , ARN Circular/metabolismo , Empalme Alternativo/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Populus/genética , Estructuras R-Loop/genética , Estructuras R-Loop/fisiología , ARN Circular/genética , Xilema/genética , Xilema/metabolismo
5.
Sci Rep ; 9(1): 14998, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628413

RESUMEN

Moso bamboo is one of the economically most important plants in China. Moso bamboo is a monocarpic perennial that exhibits poor and slow germination. Thus, the flowering often causes destruction of moso bamboo forestry. However, how control of flowering and seed germination are regulated in moso bamboo is largely unclear. In this study, we identified 5 members (PhFT1-5) of the phosphatidyl ethanolamine-binding proteins (PEBP) family from moso bamboo genome that regulate flowering, flower architecture and germination, and characterized the function of these PEBP family genes further in Arabidopsis. Phylogenetic analysis revealed that 3 (PhFT1, PhFT2 and PhFT3), 1 (PhFT4) and 1 (PhFT5) members belong to the TFL1-like clade, FT-like clade, and MFT-like clade, respectively. These PEBP family genes possess all structure necessary for PEBP gene function. The ectopic overexpression of PhFT4 and PhFT5 promotes flowering time in Arabidopsis, and that of PhFT1, PhFT2 and PhFT3 suppresses it. In addition, the overexpression of PhFT5 promotes seed germination rate. Interestingly, the overexpression of PhFT1 suppressed seed germination rate in Arabidopsis. The expression of PhFT1 and PhFT5 is significantly higher in seed than in tissues including leaf and shoot apical meristem, implying their function in seed germination. Taken together, our results suggested that the PEBP family genes play important roles as regulators of flowering and seed germination in moso bamboo and thereby are necessary for the sustainability of moso bamboo forest.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Poaceae/genética , Secuencia de Aminoácidos , China , Flores/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Meristema/genética , Filogenia , Fitomejoramiento , Hojas de la Planta/genética , Semillas/crecimiento & desarrollo
6.
Photochem Photobiol ; 93(1): 112-127, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861972

RESUMEN

Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.


Asunto(s)
Arabidopsis/genética , Criptocromos/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Luz , Transcripción Genética/fisiología , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Color , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal , Transcripción Genética/efectos de la radiación
7.
ScientificWorldJournal ; 2014: 809353, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25089296

RESUMEN

Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.


Asunto(s)
Ácido Abscísico/farmacología , Oryza/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...