Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 116(5): 1325-1341, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596913

RESUMEN

Sensing of environmental challenges, such as mechanical injury, by a single plant tissue results in the activation of systemic signaling, which attunes the plant's physiology and morphology for better survival and reproduction. As key signals, both calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ) interplay with each other to mediate plant systemic signaling. However, the mechanisms underlying Ca2+ -H2 O2 crosstalk are not fully revealed. Our previous study showed that the interaction between glycolate oxidase and catalase, key enzymes of photorespiration, serves as a molecular switch (GC switch) to dynamically modulate photorespiratory H2 O2 fluctuations via metabolic channeling. In this study, we further demonstrate that local wounding induces a rapid shift of the GC switch to a more interactive state in systemic leaves, resulting in a sharp decrease in peroxisomal H2 O2 levels, in contrast to a simultaneous outburst of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived apoplastic H2 O2 . Moreover, the systemic response of the two processes depends on the transmission of Ca2+ signaling, mediated by glutamate-receptor-like Ca2+ channels 3.3 and 3.6. Mechanistically, by direct binding and/or indirect mediation by some potential biochemical sensors, peroxisomal Ca2+ regulates the GC switch states in situ, leading to changes in H2 O2 levels. Our findings provide new insights into the functions of photorespiratory H2 O2 in plant systemic acclimation and an optimized systemic H2 O2 signaling via spatiotemporal interplay between the GC switch and NADPH oxidases.


Asunto(s)
Oxidorreductasas de Alcohol , Plantas , Catalasa/metabolismo , Plantas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Receptores de Glutamato , Peróxido de Hidrógeno/metabolismo
2.
Plant J ; 112(6): 1429-1446, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36382906

RESUMEN

The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.


Asunto(s)
Peróxido de Hidrógeno , Plantas , Peróxido de Hidrógeno/metabolismo , Plantas/metabolismo , Homeostasis
3.
BMC Plant Biol ; 21(1): 326, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229625

RESUMEN

BACKGROUND: Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS: In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase ß (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION: We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/enzimología , Oxidorreductasas de Alcohol/genética , Vías Biosintéticas/efectos de la radiación , Respiración de la Célula/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , Oryza/genética , Oryza/efectos de la radiación , Peroxisomas/metabolismo , Peroxisomas/efectos de la radiación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triptófano/metabolismo
4.
Molecules ; 15(6): 4369-81, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20657447

RESUMEN

The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.


Asunto(s)
Acacia/química , Antioxidantes/química , Corteza de la Planta/química , Hojas de la Planta/química , Raíces de Plantas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Taninos/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA