Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(5): 321, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173309

RESUMEN

With the expansion of the aging population, age-associated sarcopenia (AAS) has become a severe clinical disease of the elderly and a key challenge for healthy aging. Regrettably, no approved therapies currently exist for treating AAS. In this study, clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were administrated to two classic mouse models (SAMP8 mice and D-galactose-induced aging mice), and their effects on skeletal muscle mass and function were investigated by behavioral tests, immunostaining, and western blotting. Core data results showed that hUC-MSCs significantly restored skeletal muscle strength and performance in both mouse models via mechanisms including raising the expression of crucial extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging. For the first time, the study comprehensively evaluates and demonstrates the preclinical efficacy of clinical-grade hUC-MSCs for AAS in two mouse models, which not only provides a novel model for AAS, but also highlights a promising strategy to improve and treat AAS and other age-associated muscle diseases. This study comprehensively evaluates the preclinical efficacy of clinical-grade hUC-MSCs in treating age-associated sarcopenia (AAS), and demonstrates that hUC-MSCs restore skeletal muscle strength and performance in two AAS mouse models via raising the expression of extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging, which highlights a promising strategy for AAS and other age-associated muscle diseases.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Sarcopenia , Humanos , Ratones , Animales , Anciano , Diferenciación Celular , Sarcopenia/terapia , Músculo Esquelético , Células Madre Mesenquimatosas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical
2.
Adv Sci (Weinh) ; 7(17): 1903809, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32995116

RESUMEN

Stem cells have emerged as a potential therapy for a range of neural insults, but their application in Alzheimer's disease (AD) is still limited and the mechanisms underlying the cognitive benefits of stem cells remain to be elucidated. Here, the effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on the recovery of cognitive ability in SAMP8 mice, a senescence-accelerated mouse model of AD is explored. A functional assay identifies that the core functional factor hepatocyte growth factor (HGF) secreted from hUC-MSCs plays critical roles in hUC-MSC-modulated recovery of damaged neural cells by down-regulating hyperphosphorylated tau, reversing spine loss, and promoting synaptic plasticity in an AD cell model. Mechanistically, structural and functional recovery, as well as cognitive enhancements elicited by exposure to hUC-MSCs, are at least partially mediated by HGF in the AD hippocampus through the activation of the cMet-AKT-GSK3ß signaling pathway. Taken together, these data strongly implicate HGF in mediating hUC-MSC-induced improvements in functional recovery in AD models.

3.
Stem Cell Res Ther ; 8(1): 255, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116023

RESUMEN

BACKGROUND: Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. METHODS: For survival experiments, lethally irradiated C57BL/6 mice were injected with a low number of BM mononuclear cells (MNCs) and CAPE according to the indicated schedule. Homing efficiency analysis was conducted using flow cytometry and colony-forming unit (CFU) assays. The influence of intraperitoneal injection of CAPE on short-term and long-term engraftment of HSPCs was evaluated using competitive and non-competitive mouse transplantation models. To investigate the mechanism by which CAPE enhanced HSPC homing, we performed these experiments including Q-PCR, western blot, immunohistochemistry and CFU assays after in-vivo HIF-1α activity blockade. RESULTS: CAPE injection significantly increased the survival rate of recipient mice after lethal irradiation and transplantation of a low number of BM MNCs. Using HSPC homing assays, we found that CAPE notably increased donor HSPC homing to recipient BM. The subsequent short-term and long-term engraftment of transplanted HSPCs was also improved by the optimal schedule of CAPE administration. Mechanistically, we found that CAPE upregulated the expression of HIF-1α, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor 1α (SDF-1α). The HIF-1α inhibitor PX-478 blocked CAPE-enhanced HSPC homing, which supported the idea that HIF-1α is a key target of CAPE. CONCLUSIONS: Our results showed that CAPE administration facilitated HSPC homing and engraftment, and this effect was primarily dependent on HIF-1α activation and upregulation of SDF-1α and VEGF-A expression in the BM niche.


Asunto(s)
Ácidos Cafeicos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Alcohol Feniletílico/análogos & derivados , Animales , Células Cultivadas , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Alcohol Feniletílico/metabolismo , Células Madre
4.
Cell Death Dis ; 8(8): e2996, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28796260

RESUMEN

Cognitive aging is a leading public health concern with the increasing aging population, but there is still lack of specific interventions directed against it. Recent studies have shown that cognitive function is intimately affected by systemic milieu in aging brain, and improvement of systemic environment in aging brain may be a promising approach for rejuvenating cognitive aging. Here, we sought to study the intervention effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on cognitive aging in a murine model of aging. The conventional aging model in mice induced by d-galactose (d-gal) was employed here. Mice received once every two weeks intraperitoneal administration of hUC-MSCs. After 3 months of systematical regulation of hUC-MSCs, the hippocampal-dependent learning and memory ability was effectively improved in aged mice, and the synaptic plasticity was remarkably enhanced in CA1 area of the aged hippocampus; moreover, the neurobiological substrates that could impact on the function of hippocampal circuits were recovered in the aged hippocampus reflecting in: dendritic spine density enhanced, neural sheath and cytoskeleton restored, and postsynaptic density area increased. In addition, the activation of the endogenic neurogenesis which is beneficial to stabilize the neural network in hippocampus was observed after hUC-MSCs transplantation. Furthermore, we demonstrated that beneficial effects of systematical regulation of hUC-MSCs could be mediated by activation of mitogen-activated protein kinase (MAPK)-ERK-CREB signaling pathway in the aged hippocampus. Our study provides the first evidence that hUC-MSCs, which have the capacity of systematically regulating the aging brain, may be a potential intervention for cognitive aging.


Asunto(s)
Envejecimiento Cognitivo/fisiología , Aprendizaje por Laberinto/fisiología , Células Madre Mesenquimatosas/citología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Electrofisiología , Humanos , Inmunohistoquímica , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Neurogénesis/genética , Plasticidad Neuronal/genética , Cordón Umbilical/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA