Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Talanta ; 274: 125947, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38537353

Calcium channel blockers (CCB) of astrocytes can blockade the calcium ions entry through the voltage gated calcium channels (VGCC), and is widely used in the diseases related with VGCC of astrocytes. But many aspects of the interaction mechanisms between the CCB and VGCC of astrocytes still remain unclear due to the limited resolution of the approaches. Herein the effects of the nicardipine (a type of CCB) on VGCC of astrocytes were investigated at very high spatial, force and electrical resolution by multiple modes of Atomic Force Microscopy (AFM) directly. The results reveal that after the addition of nicardipine, the recognition signals of VGCC disappeared; the specific unbinding forces vanished; the conductivity of the astrocytes decreased (the current decreased about 2.9 pA and the capacitance was doubled); the surface potential of the astrocytes reduced about 14.2 mV. The results of electrical properties investigations are consistent with the simulation experiments. The relations between these biophysical and biochemical properties of VGCC have been discussed. All these demonstrate that the interactions between nicardipine and VGCC have been studied at nanometer spatial resolution, at picoNewton force resolution and very high electrical signal resolution (pA in current, pF in capacitance and 0.1 mV in surface potential) level. The approaches are considered to be high resolution and high sensitivity, and will be helpful and useful in the further investigations of the effects of other types of CCB on ion channels, and will also be helpful in the investigations of mechanisms and therapy of ion channelopathies.


Astrocytes , Calcium Channel Blockers , Calcium Channels , Microscopy, Atomic Force , Nicardipine , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/cytology , Nicardipine/pharmacology , Animals , Calcium Channels/metabolism , Calcium Channels/drug effects , Calcium Channel Blockers/pharmacology , Rats , Cells, Cultured
2.
J Inorg Biochem ; 255: 112523, 2024 Jun.
Article En | MEDLINE | ID: mdl-38489864

The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.


Coordination Complexes , Photochemotherapy , Ruthenium , Ruthenium/pharmacology , Ruthenium/chemistry , Iridium/pharmacology , Iridium/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
3.
J Pharm Biomed Anal ; 243: 116107, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38489959

Hepatocellular carcinoma (HCC) is a highly prevalent cancer with a significant impact on human health. Curcumin, a natural compound, induces cytoskeletal changes in liver cancer cells and modifies the distribution of lipids, proteins, and polysaccharides on plasma membranes, affecting their mechanical and electrical properties. In this study, we used nanomechanical indentation techniques and Kelvin probe force microscopy (KPFM) based on atomic force microscopy (AFM) to investigate the changes in surface nanomechanical and electrical properties of nuclear and cytoplasmic regions of HepG2 cells in response to increasing curcumin concentrations. CCK-8 assays and flow cytometry results demonstrated time- and concentration-dependent inhibition of HepG2 cell proliferation by curcumin. Increasing curcumin concentration led to an initial increase and then decrease in the mechanical properties of nuclear and cytoplasmic regions of HepG2 cells, represented by the Young's modulus (E), as observed through nanoindentation. KPFM measurements indicated decreasing trends in both cell surface potential and height. Fluorescence microscopy results indicated a positive correlation between curcumin concentration and phosphatidylserine translocation from the inner to the outer membrane, which influenced the electrical properties of HepG2 cells. This study provides valuable insights into curcumin's mechanisms against cancer cells and aids nanoscale evaluation of therapeutic efficacy and drug screening.


Carcinoma, Hepatocellular , Curcumin , Liver Neoplasms , Humans , Microscopy, Atomic Force/methods , Curcumin/pharmacology , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy
4.
Anal Methods ; 15(15): 1855-1860, 2023 04 13.
Article En | MEDLINE | ID: mdl-36960734

Voltage-gated sodium channels (VGSCs) are widely expressed in various types of tumor and cancer cells, and NaV1.5 is overexpressed in highly metastatic breast cancer cells. There may be positive relations between the expression levels of NaV1.5 and breast cancer recurrence and metastasis. Herein, NaV1.5 was detected and localized on the surfaces of normal and cancer breast cells by the single molecule recognition imaging (SMRI) mode of atomic force microscopy (AFM). The results reveal that NaV1.5 was irregularly distributed on the surfaces of normal and cancer breast cells. The NaV1.5 has an area percentage of 0.6% and 7.2% on normal and cancer breast cells, respectively, which indicates that there is more NaV1.5 on cancer cells than on normal cells. The specific interaction forces and binding kinetics in the NaV1.5-antibody complex system were investigated with the single molecule force spectroscopy (SMFS) mode of AFM, indicating that the stability of the NaV1.5-antibody on normal breast cells is higher than that on cancer breast cells. All these results will be useful to study the interactions of other ion channel-antibody systems, and will also be useful to understand the role of sodium channels in tumor metastasis and invasion.


Breast Neoplasms , Voltage-Gated Sodium Channels , Humans , Female , Neoplasm Recurrence, Local , Voltage-Gated Sodium Channels/metabolism , Cell Line, Tumor
5.
Appl Opt ; 62(3): 735-744, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36821279

In this paper, a random forest regression (RFR) rain size characterization method based on a laser ultrasound technique is investigated to predict the grain size of titanium alloy (Ti-6Al-4V). The longitudinal wave velocity of the ultrasound signal and the attenuation coefficient at different frequencies are used as the input and the grain size is used as the output. An RFR algorithm was used to develop a grain size prediction model. Meanwhile, the grain size calculation model based on conventional scattering attenuation was established by calibrating the n value in the classical scattering theory using the attenuation coefficients at different frequencies of ultrasonic signals. The results show that the RFR algorithm is feasible for the grain size characterization of titanium alloys.

6.
J Colloid Interface Sci ; 628(Pt A): 642-651, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-35940148

Heterostructure materials, as newborn electrode materials for rechargeable batteries, are attracting increasing attention due to their robust architectures and superior electrochemical performances. It is widely believed that the inner electric field induced at the interface can improve the electric conductivity and ion diffusion kinetics, thus enhancing the long-term stability and high-rate performance of the batteries. Although much progress is made on heterostructure construction, the performance of the batteries is still far from satisfying the commercial applications. In this work, a new type of SnO2/SnSx (x = 1, 1.5) heterostructure embedded in carbon framework (C@SnO2/SnSx) is constructed via a facile sulfidation process. Compared to a single heterojunction, the multi-heterojunctions generated at SnO2/SnSx interface can induce an intensified built-in electric field, which promotes charge transportation and reaction kinetics of the electrode for Na-ions storage. Upon the sodiation process, the induced intensified electric field drives Na ions from Sn2S3 or SnO2 to SnS, while an inverse transportation of Na ions are accelerated upon the desodation process. As a result, C@SnO2/SnSx exhibits an outstanding reversible capacity of 510 mA h g-1 after 300 cycles at 200 mA g-1.

7.
Adv Sci (Weinh) ; 9(8): e2104506, 2022 Mar.
Article En | MEDLINE | ID: mdl-35037427

Although solid composite electrolytes show tremendous potential for the practical solid-state lithium metal batteries, searching for a straightforward tactic to promote the ion conduction at electrolyte/electrode interface, especially settling lithium dendrites formation caused by the concentration gradient polarization, are still long-standing problems. Here, the authors report a corrugated 3D nanowires-bulk ceramic-nanowires (NCN) skeleton reinforced composite electrolyte with regulated interfacial Li-ion transport behavior. The special and integrated NCN skeleton endows the electrolyte with fast Li-ion transfer and solves the Li+ concentration polarization at electrode/electrolyte interface, thereby eliminating the energy barrier originated from the redistribution of charge carriers and offering homogeneous interfacial Li-ion flux on lithium anode. As a "double insurance", the bulk ceramic sheet in 3D framework enables the electrolyte to block the mobility of anions. The rational designed NCN composite electrolyte exhibits excellent ionic conductivity and the assembled all-solid-state battery possesses 90.2% capacity retention after 500 cycles. The proposed strategy affords a special insight in designing high-performance solid composite electrolytes.

8.
Angew Chem Int Ed Engl ; 60(21): 12116-12123, 2021 May 17.
Article En | MEDLINE | ID: mdl-33723915

Solid-state lithium metal batteries built with composite polymer electrolytes using cubic garnets as active fillers are particularly attractive owing to their high energy density, easy manufacturing and inherent safety. However, the uncontrollable formation of intractable contaminant on garnet surface usually aggravates poor interfacial contact with polymer matrix and deteriorates Li+ pathways. Here we report a rational designed intermolecular interaction in composite electrolytes that utilizing contaminants as reaction initiator to generate Li+ conducting ether oligomers, which further emerge as molecular cross-linkers between inorganic fillers and polymer matrix, creating dense and homogeneous interfacial Li+ immigration channels in the composite electrolytes. The delicate design results in a remarkable ionic conductivity of 1.43×10-3  S cm-1 and an unprecedented 1000 cycles with 90 % capacity retention at room temperature is achieved for the assembled solid-state batteries.

9.
Opt Express ; 29(1): 305-314, 2021 Jan 04.
Article En | MEDLINE | ID: mdl-33362115

Data-processing techniques in spectroscopy are fundamental and powerful analytical tools for lots of practical applications. In the age of big data, high-speed data-processing in spectroscopy is in urgent need, especially for the real-time analysis/feedback of data stream of spectroscopy or the capture of non-repetitive/rare phenomena in fast dynamic process. So far, intensive researches focus on high-speed processing of light signal in time/spatial domain but few people find a way to do it in spectral domain. Here, we report an optical computing technology for high-speed optical spectrum processing with features of real time, multiple functions, all-fiber configuration and immunity to electromagnetic interference. The software-controlled system could perform as, but not limited to, the first-order (or arbitrary fractional-order) differentiator/integrator/Hilbert transformer and tunable band-pass filter, respectively, to handle spectral data rapidly. High-speed processing of optical spectrum at a rate of 10,000,000 times per second is demonstrated.

10.
Chemosphere ; 262: 127885, 2021 Jan.
Article En | MEDLINE | ID: mdl-32805658

In recent years, research on graphene oxide (GO) has developed rapidly in both academic and industrial applications such as electronic, biosensor, drug delivery, water treatment and so forth. Based on the large amount of applications, it is anticipated that GO will inevitably find its own way to the environment, if used are not restricted to prevent their release. Environmental transformation is an important transformation process in the natural environment. In this review, we will summarize the recent developments on environmental transformation of GO in the aquatic environment. Although papers on environmental transformation of graphene-based nanomaterials can be found, a systematic picture describing photo-transformation of GO (dividing into different irradiation sources), environmental transformation of GO in the dark environmental, the environmental toxicity of GO are still lacking. Thus, it is essential to summarize how different light sources will affect the GO structure and reactive oxygen species generation in the photo-transformation process, how GO will react with various natural constituents in the aquatic environment, whether GO will toxic to different aquatic organisms and what will be the interactions between GO and the intracellular receptors in the intracellular level once GO released into the aquatic environment. This review will arouse the realization of potential risk that GO can bring to the aquatic environment and enlighten us to pay attention to behaviors of other two-dimensional GO-like nanomaterials, which have been intensively applied and studied in recent years.


Graphite/chemistry , Water Pollutants, Chemical/chemistry , Aquatic Organisms , Nanostructures/chemistry , Oxides/chemistry , Water Pollutants, Chemical/toxicity
11.
Opt Lett ; 44(12): 2955-2958, 2019 Jun 15.
Article En | MEDLINE | ID: mdl-31199354

We present a sparse-sampled camera for compressed sensing spectral domain optical coherence tomography (CS SD-OCT), which is mainly composed of a novel mask with specially designed coating and a commercially available CCD camera. The sparse-sampled camera under-samples the SD-OCT spectrum in hardware, thus reduces the acquired image data and can achieve faster A-scan speed than conventional CCD camera with the same pixel number. Compared with a conventional SD-OCT system, the CS SD-OCT system equipped with the sparse-sampled camera has better fall-off and SNR performance. CS-OCT imaging of bio-tissue is also demonstrated.

12.
J Environ Sci (China) ; 81: 102-118, 2019 Jul.
Article En | MEDLINE | ID: mdl-30975314

Biological volatile organic compounds (BVOCs) have a large influence on atmospheric environmental quality, climate change and the carbon cycle. This study assesses the composition and diurnal variation in emission rates of BVOCs from Pinus tabuliformis, using an enclosure technique. Environmental parameters (temperature and light intensity) and physiological parameters (net photosynthetic rate, Pn; stomatal conductance, gs; intercellular CO2 concentration, Ci; and transpiration rate, Tr) that may affect emission behavior were continuously monitored. The 10 most abundant compound groups emitted by P. tabuliformis were classified by gas chromatography-mass spectrometry. The dominant monoterpenoid compounds emitted were α-pinene, ß-myrcene, α-farnesene and limonene. The diurnal emission rate of BVOCs changed with temperature and light intensity, with dynamic analysis of BVOCs emissions revealing that their emission rates were more affected by temperature than light. The variation in monoterpene emission rates was consistent with estimates of Pn, gs and Tr. Basal emission rates (at 30 °C,) of the main BVOCs ranged from 0.006 to 0.273 µg  -1/(hr g), while the basal ER standardization coefficients ranged from 0.049 to 0.144 °C-1. Overall, these results provide a detailed reference for the effective selection and configuration of tree species to effectively prevent and control atmospheric pollution.


Air Pollutants/analysis , Environmental Monitoring , Pinus/physiology , Volatile Organic Compounds/analysis , Acyclic Monoterpenes , Bicyclic Monoterpenes , Monoterpenes/analysis , Pinus/chemistry , Sesquiterpenes/analysis
13.
Opt Lett ; 44(8): 2077-2080, 2019 Apr 15.
Article En | MEDLINE | ID: mdl-30985815

For all imaging techniques, such as optical coherence tomography (OCT), fast imaging speed is always of high demand. Optical computing OCT (OC2T) has achieved ultrahigh speed for real time 3D imaging without post data processing, but its spatial resolution is lowered down due to an imperfect Fourier transformation in the optical computing process. In this Letter, we illustrate the theory of OC2T and prove that the dispersion imbalance between reference arm and sample arm may be introduced to improve the resolution. Furthermore, this novel OC2T technique can also enable a conjugate restrained OCT imaging without any data processing, achieving ∼2 times higher resolution than typical OC2T. At an imaging speed of 5M-A-scans per second, the dispersion imbalance OC2T has strong ability of restraining the conjugate signal with a conjugate signal rejection ratio of 2.6.

14.
Environ Sci Pollut Res Int ; 25(4): 3435-3445, 2018 Feb.
Article En | MEDLINE | ID: mdl-29152696

2,4,6-Trichloroanisole (TCA) is an odorous compound that is often detected in tap water and is difficult to be removed via water treatment. In this study, the transformation efficiency of TCA in the presence of persulfate (PS) activated by iron (Fe2+, Fe0, and Fe3+) was investigated for the first time. The effects of the activator dosage, oxidant dosage, pH, dosing method, chelating agents, humic acid, and temperature were evaluated. The degradation rate of TCA increased with increasing PS dosages (0.12-0.48 mM) and initial Fe2+ concentrations (0.12-0.96 mM), while it decreased with higher Fe2+ concentrations. Fe2+/PS and Fe0/PS systems achieved their best TCA removal efficiency at pH 7 and 2.5, respectively. According to the results of electron paramagnetic resonance (EPR), the contribution of SO4-• to TCA degradation was much higher than that of •OH. Gradual addition of Fe2+ improved TCA degradation compared to single addition. Citric acid (CA) promoted TCA degradation under Fe2+/PS at the beginning of the reaction, but inhibited it after 10 min. Ethylenediaminetetraacetic acid (EDTA) improved the TCA removal rate with an EDTA/Fe2+ molar ratio of 0.5:1, while it decreased it at higher EDTA/Fe2+ molar ratios. Oxalic acid (OA) negatively affected TCA degradation with increasing OA/Fe2+ molar ratios. Among all of the chelating agents, only CA increased TCA degradation by Fe0/PS. Humic acid promoted TCA degradation by Fe2+/PS at the proper dosage (1 mg/L). Under our specific conditions and over the temperature ranging from 10 to 25 °C, no change was observed in the reaction kinetics. It was found that 2,4,6-trichlorophenol (TCP) was the only detected oxidation product. The presence of an Fe2+-Fe3+ redox cycle in iron-activated PS systems was confirmed by TCA degradation under the Fe3+/PS system.


Anisoles/metabolism , Iron/chemistry , Odorants , Sulfates/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Anisoles/chemistry , Chelating Agents , Humic Substances , Hydrogen-Ion Concentration , Kinetics , Odorants/analysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
15.
Article En | MEDLINE | ID: mdl-29240671

Degradation of norfloxacin (NOR) was studied using a combination of microwave and UV irradiation methods (MW/UV process). Remarkable synergistic effect was found between MW and UV light. The removal rate with the MW/UV process was much faster than that with UV light irradiation only. Degradation of NOR followed second-order kinetics and ~72% of NOR could be removed in the first 5 min of MW/UV reaction. Influence of inorganic ions (cations (K⁺, Mg2+, Ca2+, Cu2+) and anions (Cl-, SO42-, NO3-, CO32-)), humic acid (HA) and surfactants (cation, anion, and non-ionic) on the degradation of NOR by the MW/UV process was investigated. Among the ions, Cu2+ and NO3- ions inhibited the degradation of NOR. The presence of HA and surfactants in water showed a slight inhibition on the NOR removal. Furthermore, the NOR degradation in the MW/UV process was primarily caused by the ·OH-photosensitization steps. Seven intermediates formed by the oxidation of NOR were identified and three reaction pathways were proposed. Removals of NOR in tap water (TW), synthetic wastewater (WW), river water (RW), and seawater (SW) were also studied, which demonstrated that the MW/UV process was an effective oxidation technology for degrading fluoroquinolone antibiotics in different water matrices.


Anti-Bacterial Agents/radiation effects , Microwaves , Norfloxacin/radiation effects , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects , Humic Substances , Kinetics , Oxidation-Reduction , Photolysis , Water Purification/methods
16.
Opt Lett ; 42(20): 4040-4043, 2017 Oct 15.
Article En | MEDLINE | ID: mdl-29028007

We present a focus-adjustable endoscopic probe for optical coherence tomography (OCT), which is able to acquire images with different focal planes and overcome depth-of-focus limitations by image fusing. The use of a two-way shape-memory-alloy spring enables the probe to adjust working distance over 1.5 mm, providing a large scanning range with high resolution and no sensitivity loss. Equipped with a homemade hollow-core ultrasonic motor, the probe is capable of performing an unobstructed 360 deg field-of-view distal scanning. Both the axial resolution and the best lateral resolution are ∼4 µm, with a sensitivity of 100.3 dB. Spectral-domain OCT imaging of phantom and biological tissues with the probe is also demonstrated.


Endoscopy , Tomography, Optical Coherence/methods , Image Enhancement/methods , Phantoms, Imaging
17.
Sci Rep ; 6: 37286, 2016 11 21.
Article En | MEDLINE | ID: mdl-27869131

We propose an all-optical Fourier transformation system for real-time massive data processing in high speed optical coherence tomography (OCT). In the so-called optical computing OCT, fast Fourier transformation (FFT) of A-scan signal is optically processed in real time before being detected by photoelectric detector. Therefore, the processing time for interpolation and FFT in traditional Fourier domain OCT can be dramatically eliminated. A processing rate of 10 mega-A-scans/second was experimentally achieved, which is, to our knowledge, the highest speed for OCT imaging. Due to its fiber based all-optical configuration, this optical computing OCT system is ideal for ultrahigh speed volumetric OCT imaging in clinical application.

18.
Chemosphere ; 163: 366-372, 2016 Nov.
Article En | MEDLINE | ID: mdl-27561731

Chloroanisoles are often reported as off-flavor compounds which produce an earthy and musty flavors and odors in drinking water. To improve understanding and ultimately minimize the formation of 2,4-dichloroanisole (2,4-DCA), 2,6-dichloroanisole (2,6-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA), which have low odor threshold concentrations (OTC: 0.03-4 ng L(-1)), a kinetic database for the chlorination of anisole was established by kinetic measurements. The results showed that HOCl reacted with anisole in acidic solution, with the hydrogen ion as an important catalyst. Quantification of product distribution of the produced chloroanisoles demonstrated that a chlorine attack in the para-position was favored over the ortho-position. A kinetic model was formulated, which permitted investigation of the relative importance of the chlorine dose and other water quality parameters including the concentrations of anisole and several metal ions, as well as temperature, on the product distribution of chloroanisoles. In general, high chlorine doses led to low concentrations of intermediates. The presence of ions such as Fe(3+) and Al(3+) facilitated the formation of chloroanisoles, but Zn(2+) and Mn(2+) did not. The kinetic model can be applied to optimize water chlorination and minimize earthy and musty odors.


Anisoles/chemistry , Hypochlorous Acid/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Halogenation , Kinetics , Metals/chemistry , Odorants , Taste , Water Purification
19.
J Biomed Opt ; 20(3): 030503, 2015 03.
Article En | MEDLINE | ID: mdl-25803185

We present an ultrahigh-speed optical coherence tomography (OCT) based on an all-optical swept-source with an A-scan rate of 40 MHz. The inertia-free swept-source, which has its output power of 41.2 mW and tuning range of 40 nm and high scan linearity in wavenumber with Pearson's correlation coefficients r of 0.9996, consists of a supercontinuum laser, an optical band-pass filter, a linearly chirped fiber Bragg grating, an erbium-doped fiber amplifier, and two buffer stages. With sensitivity of 87 dB, high-speed OCT imaging of biological tissue in vivo is also demonstrated.


Lasers , Tomography, Optical Coherence/methods , Amplifiers, Electronic , Erbium , Sensitivity and Specificity
20.
Opt Lett ; 39(2): 247-50, 2014 Jan 15.
Article En | MEDLINE | ID: mdl-24562118

We report a novel linear-in-wavenumber (k-linear) swept laser source based on an acousto-optic deflector (AOD). The AOD-based optical filter includes an acousto-optic deflector and a reflection grating. The laser may tune k linearly in wavenumber over time due to its appropriate configuration and is favorable for fast imaging because it avoids data resampling and recalibration, as are required in conventional swept source optical coherence tomography (SS-OCT). We achieved k-linearity with Pearson's r correlation coefficients of 0.99995 without and 0.99997 with optimization. The laser has a tuning range of 50 nm, a 3 dB swept range of 42 nm (FWHM), output power of 2.56 mW, 6 dB sensitivity roll-off depth of 0.941 mm, and central wavelength of 1064 nm at a scanning rate of ∼20 kHz. Scanning rate as high as ∼400 kHz is also achieved for this laser with the tuning range 49 nm, swept linearity of 0.99990, output power of 2.30 mW, and a 6 dB sensitivity roll-off depth 0.550 mm. SS-OCT imaging with linear-in-wavenumber swept laser is also demonstrated.

...