Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 32(3): 107925, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697997

RESUMEN

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na+) channels and sarcoplasmic reticulum calcium (Ca2+) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na+ channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models.


Asunto(s)
Medios de Cultivo/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Ingeniería de Tejidos
2.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134364

RESUMEN

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatías Diabéticas/etiología , Glucosa/toxicidad , Hiperglucemia/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/fisiopatología , Activación Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilación , Humanos , Hiperglucemia/enzimología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/enzimología , NADPH Oxidasa 2/deficiencia , NADPH Oxidasa 2/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología
3.
J Cardiovasc Dev Dis ; 4(3)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28868308

RESUMEN

Cardiac pacemaking, at rest and during the sympathetic fight-or-flight response, depends on cAMP (3',5'-cyclic adenosine monophosphate) signaling in sinoatrial node myocytes (SAMs). The cardiac "funny current" (If) is among the cAMP-sensitive effectors that drive pacemaking in SAMs. If is produced by hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels. Voltage-dependent gating of HCN channels is potentiated by cAMP, which acts either by binding directly to the channels or by activating the cAMP-dependent protein kinase (PKA), which phosphorylates them. PKA activity is required for signaling between ß adrenergic receptors (ßARs) and HCN channels in SAMs but the mechanism that constrains cAMP signaling to a PKA-dependent pathway is unknown. Phosphodiesterases (PDEs) hydrolyze cAMP and form cAMP signaling domains in other types of cardiomyocytes. Here we examine the role of PDEs in regulation of If in SAMs. If was recorded in whole-cell voltage-clamp experiments from acutely-isolated mouse SAMs in the absence or presence of PDE and PKA inhibitors, and before and after ßAR stimulation. General PDE inhibition caused a PKA-independent depolarizing shift in the midpoint activation voltage (V1/2) of If at rest and removed the requirement for PKA in ßAR-to-HCN signaling. PDE4 inhibition produced a similar PKA-independent depolarizing shift in the V1/2 of If at rest, but did not remove the requirement for PKA in ßAR-to-HCN signaling. PDE3 inhibition produced PKA-dependent changes in If both at rest and in response to ßAR stimulation. Our results suggest that PDE3 and PDE4 isoforms create distinct cAMP signaling domains that differentially constrain access of cAMP to HCN channels and establish the requirement for PKA in signaling between ßARs and HCN channels in SAMs.

4.
Circ Arrhythm Electrophysiol ; 8(6): 1472-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407967

RESUMEN

BACKGROUND: Most cardiac arrhythmias occur intermittently. As a cellular precursor of lethal cardiac arrhythmias, early afterdepolarizations (EADs) during action potentials(APs) have been extensively investigated, and mechanisms for the occurrence of EADs on a beat-to-beat basis have been proposed. However, no previous study explains slow fluctuations in EADs, which may underlie intermittency of EAD trains and consequent arrhythmias. We hypothesize that the feedback of intracellular calcium and sodium concentrations ([Na](i) and [Ca](i)) that influence membrane voltage (V) can explain EAD intermittency. METHODS AND RESULTS: AP recordings in rabbit ventricular myocytes revealed intermittent EADs, with slow fluctuations between runs of APs with EADs present or absent. We then used dynamical systems analysis and detailed mathematical models of rabbit ventricular myocytes that replicate the observed behavior and investigated the underlying mechanism. We found that a dominance of inward Na-Ca exchanger current (I(NCX)) over Ca-dependent inactivation of L-type Ca current (I(CaL)) forms a positive feedback between [Ca](i) and V, thus resulting in 2 stable AP states, with and without EADs (ie, bistability). Slow changes in [Na](i) determine the transition between these 2 states, forming a bistable on-off switch of EADs. Tissue simulations showed that this bistable switch of cellular EADs provided both a trigger and a functional substrate for intermittent arrhythmias in homogeneous tissues. CONCLUSIONS: Our study demonstrates that the interaction among V, [Ca](i), and [Na](i) causes slow on-off switching (or bistability) of AP duration in cardiac myocytes and EAD-mediated arrhythmias and suggests a novel possible mechanism for intermittency of cardiac arrhythmias.


Asunto(s)
Arritmias Cardíacas/etiología , Señalización del Calcio , Calcio/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Potenciales de la Membrana , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Estimulación Cardíaca Artificial , Simulación por Computador , Retroalimentación Fisiológica , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Técnicas In Vitro , Cinética , Masculino , Modelos Cardiovasculares , Conejos
5.
Channels (Austin) ; 7(4): 318-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23756695

RESUMEN

Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN4) channels produce the "funny current," I(f), which contributes to spontaneous pacemaking in sinoatrial myocytes (SAMs). The C-terminus of HCN channels inhibits voltage-dependent gating, and cAMP binding relieves this "autoinhibition." We previously showed 1) that autoinhibition in HCN4 can be relieved in the absence of cAMP in some cellular contexts and 2) that PKA is required for ß adrenergic receptor (ßAR) signaling to HCN4 in SAMs. Together, these results raise the possibility that native HCN channels in SAMs may be insensitive to direct activation by cAMP. Here, we examined PKA-independent activation of If by cAMP in SAMs. We observed similar robust activation of If by exogenous cAMP and Rp-cAMP (an analog than cannot activate PKA). Thus PKA-dependent ßAR-to-HCN signaling does not result from cAMP insensitivity of sinoatrial HCN channels and might instead arise via PKA-dependent limitation of cAMP production and/or cAMP access to HCN channels in SAMs.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Nodo Sinoatrial/citología , Animales , Línea Celular , Fenómenos Electrofisiológicos/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta/metabolismo
6.
J Gen Physiol ; 140(5): 557-66, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23109717

RESUMEN

Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels produce the I(f) and I(h) currents, which are critical for cardiac pacemaking and neuronal excitability, respectively. HCN channels are modulated by cyclic AMP (cAMP), which binds to a conserved cyclic nucleotide-binding domain (CNBD) in the C terminus. The unliganded CNBD has been shown to inhibit voltage-dependent gating of HCNs, and cAMP binding relieves this "autoinhibition," causing a depolarizing shift in the voltage dependence of activation. Here we report that relief of autoinhibition can occur in the absence of cAMP in a cellular context- and isoform-dependent manner: when the HCN4 isoform was expressed in Chinese hamster ovary (CHO) cells, the basal voltage dependence was already shifted to more depolarized potentials and cAMP had no further effect on channel activation. This "pre-relief" of autoinhibition was specific both to HCN4 and to CHO cells; cAMP shifted the voltage dependence of HCN2 in CHO cells and of HCN4 in human embryonic kidney (HEK) cells. The pre-relief phenotype did not result from different concentrations of soluble intracellular factors in CHO and HEK cells, as it persisted in excised cell-free patches. Likewise, it did not arise from a failure of cAMP to bind to the CNBD of HCN4 in CHOs, as indicated by cAMP-dependent slowing of deactivation. Instead, a unique ∼300-amino acid region of the distal C terminus of HCN4 (residues 719-1012, downstream of the CNBD) was found to be necessary, but not sufficient, for the depolarized basal voltage dependence and cAMP insensitivity of HCN4 in CHO cells. Collectively, these data suggest a model in which multiple HCN4 channel domains conspire with membrane-associated intracellular factors in CHO cells to relieve autoinhibition in HCN4 channels in the absence of cAMP. These findings raise the possibility that such ligand-independent regulation could tune the activity of HCN channels and other CNBD-containing proteins in many physiological systems.


Asunto(s)
AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Activación del Canal Iónico/efectos de los fármacos , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/fisiología , Ligandos , Potenciales de la Membrana/efectos de los fármacos , Canales de Potasio , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología
7.
Channels (Austin) ; 5(2): 115-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21150293

RESUMEN

The funny current, I(f), in sinoatrial myocytes is thought to contribute to the sympathetic fight-or-flight increase in heart rate. I(f) is produced by hyperpolarization-activated cyclic nucleotide sensitive-4 (HCN4) channels, and it is widely believed that sympathetic regulation of I(f) occurs via direct binding of cAMP to HCN4, independent of phosphorylation. However, we have recently shown that Protein Kinase A (PKA) activity is required for sympathetic regulation of I(f) and that PKA can directly phosphorylate HCN4. In the present study, we examined the effects of a myristoylated PKA inhibitory peptide (myr-PKI) on I(f) in mouse sinoatrial myocytes. We found that myr-PKI and another myristoylated peptide potently and specifically potentiated I(f) via a mechanism that did not involve PKA inhibition and that was independent of the peptide sequence, Protein Kinase C, or phosphatidylinositol-4,5-bisphosphate. The off-target activation of I(f) by myristoylated peptides limits their usefulness for studies of pacemaker mechanisms in sinoatrial myocytes.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Regulación Enzimológica de la Expresión Génica , Ácidos Mirísticos/química , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Difosfonatos/química , Electrofisiología/métodos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/citología , Fosforilación , Unión Proteica , Proteína Quinasa C/metabolismo , Nodo Sinoatrial
8.
J Gen Physiol ; 136(3): 247-58, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20713547

RESUMEN

The sympathetic nervous system increases heart rate by activating beta adrenergic receptors and increasing cAMP levels in myocytes in the sinoatrial node. The molecular basis for this response is not well understood; however, the cardiac funny current (I(f)) is thought to be among the end effectors for cAMP signaling in sinoatrial myocytes. I(f) is produced by hyperpolarization-activated cyclic nucleotide-sensitive (HCN4) channels, which can be potentiated by direct binding of cAMP to a conserved cyclic nucleotide binding domain in the C terminus of the channels. beta Adrenergic regulation of I(f) in the sinoatrial node is thought to occur via this direct binding mechanism, independent of phosphorylation. Here, we have investigated whether the cAMP-activated protein kinase (PKA) can also regulate sinoatrial HCN4 channels. We found that inhibition of PKA significantly reduced the ability of beta adrenergic agonists to shift the voltage dependence of I(f) in isolated sinoatrial myocytes from mice. PKA also shifted the voltage dependence of activation to more positive potentials for heterologously expressed HCN4 channels. In vitro phosphorylation assays and mass spectrometry revealed that PKA can directly phosphorylate at least 13 sites on HCN4, including at least three residues in the N terminus and at least 10 in the C terminus. Functional analysis of truncated and alanine-substituted HCN4 channels identified a PKA regulatory site in the distal C terminus of HCN4, which is required for PKA modulation of I(f). Collectively, these data show that native and expressed HCN4 channels can be regulated by PKA, and raise the possibility that this mechanism could contribute to sympathetic regulation of heart rate.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Frecuencia Cardíaca , Activación del Canal Iónico , Nodo Sinoatrial/enzimología , Sistema Nervioso Simpático/fisiología , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Frecuencia Cardíaca/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/inervación , Espectrometría de Masas en Tándem , Factores de Tiempo , Transfección
9.
Neurosci Lett ; 423(2): 118-22, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17681692

RESUMEN

Nurr1 is an orphan nuclear receptor essential for development and survival of dopaminergic neurons. Mutations in Nurr1 are associated with Parkinson's disease (PD) and there is a correlation between Nurr1 and tyrosine hydroxylase (TH) expression in PD brain. Two domains, activation function 1 (AF1) at the N-terminus and AF2 at the C-terminus of Nurr1, are important for Nurr1 activation. AF1 domain is conserved in NGFI-B/Nurr1/Nor-1 family members and MAPK signal pathway is involved in AF1 activity. Using in vitro phoshorylation assays, we have shown that ERK2 is a kinase to phosphorylate Nurr1 on multiple sites. S126 and T132, which are located near AF1 core of Nurr1, are dominant sites phosphorylated by ERK2. Moreover, using GST pull-down and co-IP assays, we identified that both the N-terminus of Nurr1 containing three ERK docking domains and another ERK docking domain in Nurr1 DNA binding domain are able to bind to ERK2. Furthermore, overexpression of a constitutively active form of MEK1, together with Nurr1 and mouse ERK2, greatly increases the tyrosine hydroxylase expression in SH-SY5Y cells. Reporter gene assays show that Nurr1Delta124-133/T185A, an ERK2 phospho-site mutant form, could not further increase its transcriptional activity on TH promoter, suggesting that Nurr1 phosphorylation by ERK2 may regulate its transcriptional activity on TH promoter. Thus, our results indicate that Nurr1 phosphorylation by ERK2 may play a role in regulating the TH expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/biosíntesis , Línea Celular , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Inmunoprecipitación , Técnicas In Vitro , Neoplasias , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Fosforilación , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Transcripción Genética , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA