Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Dig Liver Dis ; 55(3): 400-406, 2023 Mar.
Article En | MEDLINE | ID: mdl-35999136

The FGF/FGFR signaling axis deregulation of the fibroblast growth factor receptor (FGFR) family is closely related to tumorigenesis, tumor progression and drug resistance to anticancer therapy. And fibroblast growth factor receptor 3 (FGFR3) is one member of this family. In this study, we aimed to investigate the effect of siRNA-induced knockdown of FGFR3 on the biological behaviors of intrahepatic cholangiocarcinoma (ICC). The expression levels of FGFR3 were determined in three intrahepatic cholangiocarcinoma cell lines RBE, HUCCT1 and HCCC9810 cell lines by Western blot. FGFR3 expression in RBE cell line was knocked down by siRNA. Our study found that knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells using Wound healing assay, Transwell migration and invasion assays and Cell proliferation assay. And significantly down-regulated the protein expression levels of MMP2, cyclinD1, and NCadherin, but had no significant effect on MMP9, cyclinD3, vimentin, E-cadherin protein. In addition, we found that ERK/c-Myc presumably is its signaling pathway by bioinformatics analysis and Western blot verification. To sum up, knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells. It demonstrated that FGFR3 probably becomes a therapeutic target for ICC and increases the proportion of potentially curable intrahepatic cholangiocarcinoma patients treated with FGFR inhibitors.


Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/pharmacology , Cell Proliferation/genetics , Cell Movement/genetics , Cholangiocarcinoma/pathology , RNA, Small Interfering/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Neuroreport ; 33(18): 819-827, 2022 12 14.
Article En | MEDLINE | ID: mdl-36367791

Hyperglycemia-induced neuronal endoplasmic reticulum (ER) stress is particularly important for the pathogenesis of diabetic encephalopathy. Spermidine (Spd) has neuroprotection in several nervous system diseases. Our current study to explore the potential protective role of Spd in hyperglycemia-induced neuronal ER stress and the underlying mechanisms. HT22 cells were treated with high glucose (HG) to establish an in-vitro model of hyperglycemia toxicity. The HT22 cells' activity was tested by cell counting kit-8 assay. RNA interference technology was used to silence the expression of growth differentiation factor 11 (GDF11) in HT22 cells. The GDF11 expression levels of mRNA were assessed using reverse transcription-PCR (RT-PCR). Western blotting analysis was applied to evaluate the expressions of GRP78 and cleaved caspase-12. Spd markedly abolished HG-exerted decline in cell viability as well as upregulations of GRP78 and cleaved caspase-12 in HT22 cells, indicating the protection of Spd against HG-induced neurotoxicity and ER stress. Furthermore, we showed that Spd upregulated the expression of GDF11 in HG-exposed HT22 cells. While, silenced GDF11 expression by RNA interference reversed the protective effects of Spd on HG-elicited neurotoxicity and ER stress in HT22 cells. These results indicated that Spd prevents HG-induced neurotoxicity and ER stress through upregulation of GDF11. Our findings identify Spd as a potential treatment for diabetic encephalopathy as well as ER stress-related neurologic diseases.


Brain Diseases , Hyperglycemia , Humans , Endoplasmic Reticulum Stress , Spermidine/pharmacology , Up-Regulation , Caspase 12/metabolism , Apoptosis , Glucose/metabolism , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology
3.
Clin Res Hepatol Gastroenterol ; 46(7): 101991, 2022.
Article En | MEDLINE | ID: mdl-35792239

PURPOSE: Intrahepatic cholangiocarcinoma (ICC) can invade and metastasize. EIF5A2 is involved in the invasive metastatic process of several digestive malignancies. However, its role in ICC is yet to be elucidated. METHODS: Immunohistochemistry (IHC) and Western blot (WB) were used to detect the level of EIF5A2 in the tumor specimens of ICC patients and evaluate the correlation between its expression and clinicopathological characteristics. The significance of EIF5A2 in the prognosis of ICC patients was further evaluated by Kaplan-Meier and Cox regression analysis. In addition, CCK-8, EdU, Transwell invasion, and scratch assays were utilized to detect tumor cell proliferation, invasion, and metastasis. Furthermore, the role of EIF5A2 in ICC cells was evaluated after modification of EIF5A2 expression. RESULTS: The level of EIF5A2 protein was significantly higher in ICC than in adjacent tissues. This high expression in the tumor samples was significantly associated with malignant phenotypes, such as lymph node metastasis (LNM), microvascular or bile duct invasion, and poor differentiation. ICC patients with high expression of EIF5A2 had short overall survival and a high cumulative recurrence rate. The multifactorial analysis showed that EIF5A2 is an independent prognostic marker. Furthermore, high levels of EIF5A2 may activate the PI3K/AKT/mTOR signaling pathway and upregulate Cyclin D1, Cyclin D3, MMP2, and MMP9 to promote ICC cell proliferation, migration, and invasion. CONCLUSION: The current study found that EIF5A2 promotes ICC progression and is a prognostic biomarker and candidate therapeutic target for ICC patients.


Bile Duct Neoplasms , Cholangiocarcinoma , Bile Ducts, Intrahepatic/pathology , Cell Proliferation/physiology , Humans , Peptide Initiation Factors , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , RNA-Binding Proteins , Eukaryotic Translation Initiation Factor 5A
4.
Carbohydr Polym ; 286: 119287, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35337508

In this paper, the two-step activation Eucommia wood tar-based activated carbon (ETAC), cellulose nanofibers (CNF) and reduced graphene oxide (rGO) were assembled to form composite aerogel in mild condition. Impressively, the doping of optimizing ETAC greatly improved the overall specific surface area (SSA) of the aerogel, and the CNF extracted from Eucommia ulmoides wood was used to enhance the mechanical properties of graphene aerogel. Besides, the composite aerogels with high content of ETAC (67% of mass ratio) possessed efficient MnOx deposition capability (1540 mg/g), which could assemble an asymmetric free-binder supercapacitor, exhibiting an ultrahigh specific capacitance and prominent cycling stability. This work offered a feasible method to fabricate free-binder composite aerogels with excellent electrochemical property for broad applications in supercapacitors.

5.
BMC Infect Dis ; 22(1): 125, 2022 Feb 05.
Article En | MEDLINE | ID: mdl-35123391

BACKGROUND: Schistosomiasis is one of the most contagious parasitic diseases affecting humans; however, glomerular injury is a rare complication mainly described with Schistosoma mansoni infection. We report a case of membranous nephropathy associated with Schistosoma japonicum infection in a Chinese man. CASE PRESENTATION: A 51-year-old Chinese male with a long history of S. japonicum infection presented to the hospital with a slowly progressing severe lower limb edema and foaming urine for over 5 months. Serum S. japonicumantigen test was positive and immunohistochemistry showed that the glomeruli were positive for the antigens. The renal pathologic diagnosis was stage III membranous nephropathy. The patient was treated with glucocorticoid, praziquantel, and an angiotensin-converting enzyme inhibitor. The edema in both lower limbs disappeared within 2 weeks, but his renal function declined progressively and proteinuria persisted after 5 months of therapy. CONCLUSIONS: Different classes of schistosomal glomerulopathy have completely different clinical manifestation and prognosis. Therefore, efforts should focus on alleviating symptoms, prevention, and early detection. S. japonicumassociated with membranous nephropathy may show a good curative effect and prognosis. However, it is necessary to monitor the renal function in such patients.


Glomerulonephritis, Membranous , Schistosoma japonicum , Schistosomiasis japonica , Schistosomiasis mansoni , Schistosomiasis , Animals , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/drug therapy , Humans , Kidney , Male , Middle Aged , Schistosomiasis japonica/complications , Schistosomiasis japonica/diagnosis , Schistosomiasis japonica/drug therapy
6.
Sci Total Environ ; 819: 153146, 2022 May 01.
Article En | MEDLINE | ID: mdl-35041957

Biochar-based slow-release fertilizers (BSRFs) are vital for the development of eco-friendly and sustainable agriculture. Considerable attention has been given to enhancing the efficiency of fertilizers (EEFs) by appropriate modification or binding to reduce nutrient waste and improve the slow-release effect on the growth of plants. In this study, sustained binding materials were presented for BSRF synthesis, including pyroligneous acids (PA), bio-oil (BO), and modified starch binder (MSB). The results show that the release ratio of phosphorus from PA + BO+MSB was 4.7%, 15.2%, and 21.2% slower than that of PA, BO, and MSB alone, respectively. The BSRFs were characterized by SEM, XRD, FT-IR, XPS, and EDS, and the release kinetic outcome revealed that PA + BO+MSB contributed to the formation of a satisfactory structure in the BSRFs. The MSB viscosity significantly influences the slow-release performance and accumulation of N, P, and K nutrients. Moreover, economic assessments showed that PA + BO+MSB exhibited the lowest cost.


Fertilizers , Pyrolysis , Fertilizers/analysis , Phosphorus , Spectroscopy, Fourier Transform Infrared , Starch/chemistry
7.
Phytomedicine ; 94: 153833, 2022 Jan.
Article En | MEDLINE | ID: mdl-34798520

BACKGROUND: Atherosclerosis (AS) is a multifactor cardiovascular disease characterized by chronic inflammation. The safety of long-term medication is the focus of clinical treatment selection and application. It is urgent to develop more high-efficiency and low side effects drugs to treat AS. Therefore, the screening of anti-AS drugs with high efficiency and low toxicity from phytomedicine has attracted more and more attention. PURPOSE: The aim of this study was to explore the new pharmacological effect of Herba patriniae against AS, to find the best origin and extraction part of Herba patriniae, furthermore, to reveal its potential action mechanism. METHODS: Apolipoprotein E gene-knockout (ApoE-/-) mice were orally administered with different extracts of Patrinia villosa Juss (PVJ) and Patrinia scabiosaefolia Fisch (PSF). Their anti-AS effect was comprehensively evaluated by small animal ultrasound, HE staining, Oil-Red O staining, platelet aggregation rate and blood lipid level. Lipid metabolomics and network pharmacology were used to study the mechanism of drug action. Finally, the expression of related proteins were detected by western blots and immunofluorescence. RESULTS: PVJ EtOAc extract and PSF EtOAc extract could significantly reduce vascular plaque, liver inflammation, platelet aggregation and blood lipid levels in AS model. By comparison, the effect of PVJEE was better than that of PSFEE. Furthermore, the results of differential metabolites indicated that PVJEE may inhibit the apoptosis of vascular endothelial cells, proliferation and migration of smooth muscle cells by reversing lysophosphatidylcholine (LPC) in the glycerophospholipid metabolic pathway, so as to play an anti-AS role. This result was double verified by KEGG based metabolic pathway enrichment analysis and related protein expression study. CONCLUSION: By changing glycerophospholipid metabolism pathway, Herba patriniae can significantly regulate lipid metabolism and inflammatory level, showing the development potential of anti-AS, which provides new candidate drugs and good prospects for the safe treatment of AS. In addition, through comparison, this study also confirmed that PVJEE was the best origin and extraction part of anti-AS.


Atherosclerosis , Lysophosphatidylcholines , Animals , Atherosclerosis/drug therapy , Endothelial Cells , Glycerophospholipids , Mice
8.
Bioorg Med Chem Lett ; 43: 128080, 2021 07 01.
Article En | MEDLINE | ID: mdl-33964439

Saponin is an active component of many phytomedicine, which has extensive pharmacology effects. Meanwhile, it is reported that cytotoxicity, especially hemolysis and hepatotoxicity, in pentacyclic triterpenoid saponin (PTS) hindered their further development and application. Surface activity, a unique physical property of saponins, is believed to be related to membrane toxicity. However, the correlation between the surface activity and cytotoxicity of saponins is still unexplained. In this paper, our aim was to explore the relationship between surface activity-cytotoxicity of pulchinenosides and the hepatotoxicity mechanism of PTS in vitro. The surface activity of different saponins was investigated by contact angle, surface free energy (SFE), and oil/water partition coefficient (log Papp). In the cytotoxicity study, the hemolysis and hepatotoxicity activity of different saponins was compared by HD50 of erythrocyte and MTT, flow cytometry and LDH assay in LO2 cells respectively. And in the hepatotoxicity mechanism study, western blot was used for observing the expression of proteins related to apoptosis and exploring the liver injury mechanism of PTS. The results suggested that the influences of surface activity on hepatocytes and erythrocytes were different, indicating that the correlation of surface activity-cytotoxicity could provide more information for development of PTS. And the result of hepatotoxicity mechanism study of saponins suggested that endogenous and exogenous apoptotic pathways could be the potential targets of PTS, which could not only provide basis for clinical monitoring and treatment of the toxicity in saponins, but also provide more reference for the clinical application of PTS and phytomedicine containing PTS.


Apoptosis/drug effects , Hepatocytes/drug effects , Saponins/pharmacology , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Conformation , Particle Size , Saponins/chemistry , Structure-Activity Relationship , Surface Properties
9.
J Ethnopharmacol ; 266: 113426, 2021 Feb 10.
Article En | MEDLINE | ID: mdl-33007392

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, the fruit of Schisandra chinensis (Turcz.) Baill (SC) is used to treat various nervous system diseases, such as dysphoria, anxiety, insomnia and many dreams. It is worthy to be noted that wine processed Schisandra chinensis (WSC) has been applied in clinic for thousands of years. AIM OF STUDY: This study aimed to investigate the possible mechanism and related metabolism of SC and WSC ameliorating anxiety behavior through modulating gut microbiota. MATERIALS AND METHODS: The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for the quality control of chemical components in SC and WSC. Chronic unpredictable stress procedure (CUSP)-induced anxiety rats were administrated with SC and WSC via gavage for five weeks. An untargeted UPLC/LTQ-Orbitrap MS metabolomic analysis of plasma was conducted to understand the effects of long-term intake of WSC and SC extracts on anxious rats. 16S rRNA microbial sequencing technology was applied to investigate gut microbiota structure. Expression of GPR81, TNF-α, S1PR2 as well as molecules in cAMP pathway was assayed by immunohistochemistry staining, RT-qPCR, or Western blot, respectively. RESULTS: 12 compounds were identified using UPLC-QTOF-MS technology, all of which are lignans. Results demonstrate that the amounts of 6-O-Benzoylgomisin O, Schisandrin, Gomisin D, Schizandrin A, Gomisin T, Schizandrin B, Schisandrin C were higher in wine-processed samples than in raw samples. Furthermore, both SC and WSC significantly ameliorated anxiety- and depression-like behavior and lipid metabolism dysfunction and attenuated hippocampal neuritis in anxiety rats. After WSC treatment, the structure and composition of gut microbiota in anxiety rats changed significantly, and gut microbiota derivatives lactate level was significantly lower in the plasma and feces. WSC treatment help restore gut microbial ecosystem dysbiosis and reverse the changes in Lachnospiraceae, Lactobacillus, Alloprevotella, and Bacteroidales in anxiety rat. In addition, the expression of liver GPR81 was decreased, and the molecules in cAMP pathway were increased in SC and WSC-treated anxiety rat. CONCLUSION: Raw and wine processed Schisandra chinensis treatment improved anxiety- and depression-like behavior through modulating gut microbiota derivatives in association with GPR81 receptor-mediated lipid metabolism pathway. And WSC has more exhibition than SC.


Anxiety/drug therapy , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Schisandra/chemistry , Animals , Behavior, Animal/drug effects , Chromatography, High Pressure Liquid , Depression/drug therapy , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Male , Mass Spectrometry , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Wine
10.
Phytomedicine ; 76: 153265, 2020 Jun 15.
Article En | MEDLINE | ID: mdl-32575028

BACKGROUND: P. chinensis saponins (PRS) are pentacyclic triterpenoid bioactive constituents from Pulsatilla chinensis (Bunge) Regel. In our previous study, PRS caused chronic liver injury (CLI) with the significant changes of lipid metabolites including sphingomyelin (SM) in serum after long-term administration. The SM in the hepatocytes membrane plays an indispensable role in maintaining cell membrane stability and regulating the extracellular and intracellular signal transduction. However, it is still unknown the pathway related to SM and the mechanism of CLI on hepatocyte. PURPOSE: The purpose of this study was to explore the hepatotoxicity mechanism of PRS in vivo and in vitro, to reveal the action of mechanism of SM and the pathway related to liver injury. METHODS: SD rats were orally administered with PRS for 240 days and liver injury was evaluated by histological examinations. Metabolomics analysis was used to explore the liver metabolic pathway affected by PRS, and the expressions of related proteins were evaluated by western blots. To discover and elucidate the underlying mechanisms of metabolites changes induced by PRS at the cellular level, cellular morphology, MTT assays, western blots and cell membrane potential measurements were carried out using LO2 cells. Furthermore, the roles of SM and cholesterol (Chol) in hepatocyte injury were investigated individually in overload Chol and SM groups. Sphingolipid metabolic pathway related with ceramide/sphingomyelin (Cer/SM) balance was explored using cellular lipidomics and RT-PCR. RESULTS: PRS gradually damaged the rat's liver in a time-dependent manner. The analysis of liver metabolism profiles showed that lipids metabolites were changed, including sphingolipid, bile acid, linoleic acid and fatty acid. We found that PRS induced apoptosis by interfering with bile acid-mediated sphingolipid metabolic pathway and Cer/SM balance in CLI. In in vitro experiments, PRS led to the increase of LDH leakage, depolarized cell membrane potential and caused cell membrane toxicity. Furthermore, PRS inducedG0/G1 phase cell cycle arrest in LO2 cells, simultaneously activated cellular extrinsic and intrinsic apoptosis pathways. PRS acted on SM and interfered with Cer/SM balance, which promote lipid metabolism dysregulation and apoptosis. CONCLUSION: PRS acted on SM to interfere Cer/SM balance on LO2 cell. Both in vivo and in vitro, PRS induced Cer/SM imbalance which promoted lipid metabolism disorder and apoptosis. Apoptosis and lipids changes gradually damaged the rats liver, and ultimately developed into CLI.

11.
Psychoneuroendocrinology ; 117: 104699, 2020 07.
Article En | MEDLINE | ID: mdl-32402927

Accumulating evidence suggests that chronic stress could perturb the composition of the gut microbiota and induce host anxiety- and depression-like behaviors. In particular, microorganism-derived products that can directly or indirectly signal to the nervous system. This study sought to investigate whether high levels of Lactobacillus and lactate in the gut of rats under chronic unpredictable stress (CUS) were the factors leading to anxiety behavior. We collected faeces and blood samples in a sterile laboratory bench to study the microbiome and plasma metabolome from adult male rats age and environment matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rRNA gene from faeces samples. UPLC-MS metabolomics were used to examine plasma samples. Search for potential biomarkers by combining the different data types. Finally, we found a regulated signaling pathway through the relative expression of protein and mRNA. Both lactate feeding and fecal microbiota transplantation caused behavioral abnormalities such as psychomotor malaise, impaired learning and memory in the recipient animals. These rats also showed inhibition of the adenylate cyclase (AC)-protein kinase A (PKA) pathway of lipolysis after activation of G protein-coupled receptor 81 (GPR81) by lactate in the liver, as well as increased tumor necrosis factor α (TNF-α), compared with healthy controls. Furthermore, we showed that sphingosine-1-phosphate receptor 2 (S1PR2) protein expression in hippocampus was reduced in chronic unpredictable stress compared to control group and its expression negatively correlates with symptom severity. Our study suggest that the gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway.


Anxiety , Behavior, Animal/physiology , Cognitive Dysfunction/metabolism , Gastrointestinal Microbiome/physiology , Hippocampus/metabolism , Lactic Acid/adverse effects , Metabolome/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Stress, Psychological , Animals , Anxiety/metabolism , Anxiety/microbiology , Anxiety/physiopathology , Disease Models, Animal , Male , RNA, Ribosomal, 16S , Rats , Stress, Psychological/metabolism , Stress, Psychological/microbiology , Stress, Psychological/physiopathology
12.
Article En | MEDLINE | ID: mdl-32419830

Ephedra sinica Stapf (EP) has a long medication history dating back centuries in the world. There were some reports of adverse effects in the central nervous system (CNS) resulting from administration of a drug containing EP or ephedrine. Compared with alkaloid monomer compounds, the effects of EP on the CNS are usually neglected. It is necessary to explore CNS affection which is helpful to use EP rationally. However, the affection and the changes of substances by EP in the brain are still unknown because the effects of drug on the brain also exhibit different tendency and distribution and usually lead to diversity of metabolite alteration in different regions. In this study, metabolomics based on different brain regions was used to investigate the affection mechanism of EP in the CNS. The metabolites in 6 brain regions from a rat that underwent oral administration with EP for 14 days were determined by UPLC/Q-TOF-MS. Brain histological examinations showed that there were no obvious lesions in EP administration groups. Partial least square-discriminant analysis (PLS-DA) displayed that there were significant separations between control and EP administration groups. 7 CNS biomarkers were found and identified in different regions. 3 metabolic pathways were disturbed by EP, including amino acid metabolism, phospholipid metabolism, and amino sugar metabolism. Furthermore, all biomarkers were significantly changed in the cortex after administration. This study may be helpful to understand the affection mechanism of EP in the CNS and improve cognition of brain regional characteristics.

13.
Res Microbiol ; 171(2): 102-106, 2020 Mar.
Article En | MEDLINE | ID: mdl-31669369

Xanthomonas oryzae pv. oryzicola (Xoc) depends on its type III secretion system (T3SS) to translocate type III secreted effectors (T3SEs), including transcription activator-like effectors (TALEs) and non-transcription activator-like effectors (non-TALEs), into host cells. T3SEs can promote the colonization of Xoc and contribute to virulence by manipulating host cell physiology. We annotated 25 genes encoding non-TALEs in Xoc strain GX01, an isolate from Guangxi in the South China's rice growing region. Through systematic mutagenesis of non-TALEs, we found that xopN, the virulence contribution of which was previously unknown for Xoc, significantly contributes to the virulence of Xoc GX01, as does avrBs2.


Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Type III Secretion Systems/genetics , Xanthomonas/physiology , Mutation , Virulence/genetics , Xanthomonas/pathogenicity
14.
PLoS One ; 14(4): e0215039, 2019.
Article En | MEDLINE | ID: mdl-30995267

The Gram-negative bacterium Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of rice bacterial leaf streak (BLS), one of the most destructive diseases of rice (Oryza sativa L.) that is the important staple crop. Xoc can invade host leaves via stomata and wounds and its type three secretion system (T3SS) is pivotal to its pathogenic lifestyle. In this study, using a novel dual RNA-seq approach, we examined transcriptomes of rice and Xoc in samples inoculated with wild type Xoc GX01 and its T3SS defective strain (T3SD), to investigate the global transcriptional changes in both organisms. Compared with T3SD strain, rice inoculated with wild type Xoc GX01 resulted in significant expression changes of a series of plant defence related genes, including ones altered in plant signalling pathway, and downregulated in phenylalanine metabolism, flavonoid and momilactone biosynthesis, suggesting repression of plant defence response and reduction in both callose deposition and phytoalexin accumulation. Also, some known transcription activator-like effector (TALE) targets were induced by Xoc GX01, e.g. OsSultr3;6 which contributes to rice susceptibility. Some cell elongation related genes, including several expansin genes, were induced by GX01 too, suggesting that Xoc may exploit this pathway to weaken cell wall strength, beneficial for bacterial infection. On the other hand, compared with wild type, the T3SD strain transcriptome in planta was characterized by downregulation of ATP, protein and polysaccharide synthesis, and upregulation of antioxidation and detoxification related genes, revealing that T3SD strain faced serious starvation and oxidation stresses in planta without a functional T3SS. In addition, comparative global transcript profiles of Xoc in planta and in medium revealed an upregulation of virulence factor synthesis and secretion in planta in favour of bacterial infection. Collectively, this study provides a comprehensive representation of cross talk between the host and bacterial pathogen, revealing insights into the Xoc-rice pathogenic dynamic and reveals novel strategies exploited by this important pathogen to cause disease.


Bacterial Proteins/genetics , Host-Pathogen Interactions/genetics , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Virulence Factors/genetics , Xanthomonas/genetics , Bacterial Proteins/metabolism , Disease Resistance/genetics , Oryza/genetics , Plant Proteins/metabolism , RNA-Seq/methods , Virulence Factors/metabolism , Xanthomonas/classification
15.
J Pharm Biomed Anal ; 169: 215-224, 2019 May 30.
Article En | MEDLINE | ID: mdl-30877933

Poly (l-glutamic acid)-Combretastatin A4 conjugate (PLG-CA4) is a novel nano-anticancer drug. For macromolecule conjugate nanomedicine, its pharmacology mechanism is closely related to the pharmacokinetic profiles in vivo. It is a great significance that evaluates this polymer drug combined by covalently bound via studying the pharmacokinetics and distribution characteristics. Therefore, it is urgent to develop a simple, accurate and practical analytical method for such conjugated polymers combined by covalently bound. In this study, a simple and complete alkali hydrolysis was designed and optimized for the total CA4 concentrations obtained from PLG-CA4. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method with multiple-reaction monitoring (MRM) mode and the internal standard (IS) were adopted to develop a sensitive and accurate method satisfied both free and total determination of PLG-CA4 in biosamples. The method was validated which showed good linearity over a wide concentration range (R2 > 0.99), and the intra- and inter-day assay variability was less than 15% for CA4. The mean extraction recoveries of CA4 from plasma were all more than 80.0%. Furthermore, the method was applied to the study of pharmacokinetics (PK) and tissue distribution of PLG-CA4 in tumor-bearing nude mice. PLG-CA4 significantly prolonged retention time and enhanced distribution of CA4 in tumor.


Glutamic Acid/chemistry , Glutamic Acid/pharmacokinetics , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Stilbenes/chemistry , Stilbenes/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Hydrolysis , Mice , Mice, Inbred BALB C , Mice, Nude , Nanomedicine/methods , Tandem Mass Spectrometry/methods , Tissue Distribution
16.
J Ethnopharmacol ; 235: 435-445, 2019 May 10.
Article En | MEDLINE | ID: mdl-30703498

ETHNOPHARMACOLOGICAL RELEVANCE: Pulsatilla chinensis (Bunge) Regel is a valuable traditional Chinese medicine (TCM) which is widely used for the treatment of schistosomiasis, inflammatory, bacterial infections. In recent years, P chinensis has been reported to exhibit antitumor activities. However, the mechanisms underlying its toxic effects remain largely unresolved. This paper is designed to investigate the damage of long-term oral P. chinensis saponins (PRS) and to explore its potential damage mechanisms by serum metabonomics approach. MATERIALS AND METHODS: The serum samples from control and PRS treated rats were analyzed by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) in positive ionization mode and negative ionization mode. Liver function index of ALT, AST and ALP, blood biochemistry and biomarkers were examined to identify specific changes of injury. Acquired data were subjected to principal component analysis (PCA) for differentiating the control and PRS treated groups. Then, serum metabolic profiling was analyzed and pathway analysis performed on the biomarkers reversed after PRS treated and further integration of metabolic networks. RESULTS: The results suggested that serum liver function indexes of ALT had significantly changed and stage increased. AST, ALP detection content show volatility changes. Changes in the 15 biomarkers found in the serum, such as acetaminophen glucuronide, 9 E, 11 E-linoleic acid, chenodeoxycholic acid, monoacylglycerides, sphingomyelin (SM), 7-ketodeoxycholic acid and 12-keto-deoxycholic acid, which were closely related to changes in liver injury. It could be seen clearly that with the change of the dosing time, the biomarkers in the serum have undergone obvious, regular and progressive changes through the score plot and corresponding loading plot. The underlying regulations of PRS-perturbed metabolic pathways were discussed according to the identified metabolites. CONCLUSION: The present study proves the potential of UPLC-QTOF-MS based metabonomics in mapping metabolic response. Long-term oral administration of P. chinensis saponins can cause chronic liver injury, and its safety needs further attention. It is of great significance in safeguarding human health to explore the damage mechanism of Pulsatilla chinensis saponins on liver by serum metabolomics.


Chemical and Drug Induced Liver Injury, Chronic/etiology , Metabolomics/methods , Pulsatilla/chemistry , Saponins/toxicity , Administration, Oral , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chromatography, High Pressure Liquid/methods , Liver Function Tests , Male , Mass Spectrometry/methods , Rats , Rats, Sprague-Dawley , Saponins/administration & dosage , Saponins/isolation & purification , Time Factors
17.
International Eye Science ; (12): 2093-2096, 2017.
Article Zh | WPRIM | ID: wpr-669217

AIM:To investigate the clinical efficacy of pars plana vitrectomy and Baerveldt glaucoma implant(PPV-BGI) in the treatment of refractory glaucoma.METHODS:One hundred twenty-nine refractory glaucoma patient's clinical data from March 2013 to December 2015 that underwent PPV-BGI were retrospectively reviewed.Among them,63 eyes were neovascular glaucoma (NVG) and 69 eyes were other types of glaucoma (non-NVG).The changes of intraocular pressure(lOP),surgical results,visual acuity (VA),the number of glaucoma medications,complications,and the success rate of surgery were analyzed.RESULTS:Cumulative success rates for the NVG group and non-NVG group were 46.0% and 81.2%,respectively,within 1a after surgeries,the difference was significantly (P< 0.05).Preoperative lOP was 30.4 ± 10.2mmHg in the non-NVG group and 40.1±10.4mmHg in the NVG group,and lOP was reduced to 14.9±4.1mmHg in the non-NVG group and 17.8±4.9mmHg in the NVG,and the difference was significantly (P<0.05).Number of glaucoma medications decreased from 2.7 ± 1.2 in the non-NVG group and 2.9 ± 1.4 in the NVG group preoperatively to 0.51 ±0.96 in the non-NVG group and 0.96±1.18 in the NVG group,and the difference was significantly (P<0.05).Improvement in VA of in the NVG group and non-NVG group were observed in 14 eyes of 13 patients and 38 eyes and 37 patients respectively,and the difference was significantly (P<0.05).The postoperative complications of 1d and 1a follow-up in NVG group was significantly higher than non-NVG group (P<0.05).CONCLUSION:PPV-BGI is a viable surgical option for eyes with refractory glaucoma,but visual outcomes are frequently poor because of ocular comorbidities,especially in eyes with NVG.

18.
ACS Appl Mater Interfaces ; 6(11): 8467-74, 2014 Jun 11.
Article En | MEDLINE | ID: mdl-24758144

ZnO/ZnS/CdS/CuInS2 core-shell nanowire arrays with enhanced photoelectrochemical activity under visible light were successfully prepared via ion exchange and hydrothermal methods. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis absorption, X-ray photoemission spectroscopy, and photoelectrochemical response. As a p-n junction photoanode, ZnO/ZnS/CdS/CuInS2 heterostructure shows much higher visible light photoelectrocatalytic activity toward water splitting than ZnO/ZnS/CdS and ZnO/ZnS films. The ZnO/ZnS/CdS/CuInS2 film with optimal constitution exhibits the highest photocurrent of 10.5 mA/cm(2) and the highest IPCE of approximately 57.7% at 480 nm and a bias potential of 0 V versus Ag/AgCl. The critical roles of CdS and ZnS in ZnO/ZnS/CdS/CuInS2 heterostructure were investigated. ZnS, as a passivation layer, suppresses the recombination of the photogenerated charge carriers at the interface of the oxide and CuInS2. CdS enhances the absorption of visible light and forms p-n junctions with CuInS2, which promotes the transport of charge carriers and retards the recombination of electrons and holes in CuInS2 to improve the photoelectrochemical performance of ZnO/ZnS/CdS/CuInS2 heterostructure.

...