Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 40(1): 59-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326959

RESUMEN

A comprehensive survey of mungbean-growing areas was conducted to observe leaf spot disease caused by Alternaria alternata. Alternaria leaf spot symptoms were observed on the leaves. Diversity of 50 genotypes of mungbean was assessed against A. alternata and data on pathological traits was subjected to cluster analysis. The results showed that genotypes of mungbean were grouped into four clusters based on resistance parameters under the influence of disease. The principal component biplot demonstrated that all the disease-related parameters (% disease incidence, % disease intensity, lesion area, and % of infection) were strongly correlated with each other. Alt a 1 gene that is precisely found in Alternaria species and is responsible for virulence and pathogenicity. Alt a 1 gene was amplified using gene specific primers. The isolated pathogen produced similar symptoms when inoculated on mungbean and tobacco. The sequence analysis of the internal transcribed spacer (ITS) region, a 600 bp fragment amplified using specific primers, ITS1 and ITS2 showed 100% identity with A. alternata. Potato virus X (PVX) -based silencing vector expressing Alt a 1 gene was constructed to control this pathogen through RNA interference in tobacco. Out of 50 inoculated plants, 9 showed delayed onset of disease. Furthermore, to confirm our findings at molecular level semi-quantitative reverse transcriptase polymerase chain reaction was used. Both phenotypic and molecular investigation indicated that RNAi induced through the VIGS vector was efficacious in resisting the pathogen in the model host, Tobacco (Nicotiana tabacum). To the best of our knowledge, this study has been reported for the first time.

2.
ACS Omega ; 8(1): 682-687, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643518

RESUMEN

Biofilm-associated bacterial infections are problematic for physicians due to high antimicrobial resistance in biofilm-forming bacteria. Staphylococcus species, particularly Staphylococcus epidermidis, cause severe infections particularly associated with clinical implants. In this study, we have detected the biofilm formation potential of clinical S. epidermidis isolates using phenotypic and genotypic approaches in nutrient-rich and nutrient-deficient growth conditions. The Congo red agar method determined the biofilm formation potential with limited efficacy. However, the tissue culture plate method adroitly classified the isolates as strong, moderate, weak, and non-biofilm producers with five (10%) of the isolates as strong biofilm producers. Ten biofilm-associated genes were targeted, and the fruA gene was found to be the most prevalent (20%). Three antibiofilm compounds, carvacrol, 2-aminobenzemidazole, and 3-indole acetonitrile, were assessed against strong biofilm-producing S. epidermidis isolates. To the best of our knowledge, this is the first report of genotypic and phenotypic detection of biofilms formed by clinical S. epidermidis isolates from this region. The use of 3-indole acetonitrile against these biofilms and toluene as a solvent is novel. The study highlights the significance of biofilm and antibiofilm potential of the studied compounds for effective treatment and control of S. epidermidis infections.

3.
Biomed Res Int ; 2022: 4975721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164443

RESUMEN

Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.


Asunto(s)
Vacunas Bacterianas , Legionella pneumophila , Enfermedad de los Legionarios , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Legionella pneumophila/genética , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/prevención & control , Proteómica , Receptor Toll-Like 4/inmunología
4.
PLoS Negl Trop Dis ; 12(11): e0006839, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30500817

RESUMEN

The pathogenesis of Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid fever in humans, is mainly attributed to the acquisition of horizontally acquired DNA elements. Salmonella pathogenicity islands (SPIs) are indubitably the most important form of horizontally acquired DNA with respect to pathogenesis of this bacterium. The insertion or deletion of any of these transferrable SPIs may have impact on the virulence potential of S. Typhi. In this study, the virulence potential and genetic relatedness of 35 S. Typhi isolates, collected from 2004 to 2013 was determined by identification of SPI and non-SPI virulence factors through a combination of techniques including virulotyping, Whole Genome Sequencing (WGS), and Variable Number of Tandem Repeats (VNTR) profiling. In order to determine the virulence potential of local S. Typhi isolates, 56 virulence related genes were studied by PCR. These genes are located in the core as well as accessory genome (SPIs and plasmid). Major variations among studied virulence determinants were found in case of SPI-7 and SPI-10 associated genes. On the basis of presence of virulence related genes, the studied S. Typhi isolates from Pakistan were clustered into two virulotypes Vi-positive and Vi-negative. Interestingly, SPI-7 and SPI-10 were collectively absent or present in Vi-negative and Vi-positive strains, respectively. Two Vi-negative and 11 Vi-positive S. Typhi strains were also analyzed by whole genome sequencing (WGS) and their results supported the PCR results. Genetic diversity was tested by VNTR-based molecular typing. All 35 isolates were clustered into five groups. Overall, all Vi-negative isolates were placed in a single group (T5) whereas Vi-positive isolates were grouped into four types. Vi-negative and Vi-positive isolates were mutually exclusive. This is the first report on the comparative distribution of SPI and non-SPI related virulence genes in Vi-negative and Vi-positive S. Typhi isolates with an important finding that SPI-10 is absent in all Vi-negative isolates.


Asunto(s)
Proteínas Bacterianas/genética , Islas Genómicas , Polisacáridos Bacterianos/metabolismo , Salmonella typhi/aislamiento & purificación , Fiebre Tifoidea/microbiología , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Humanos , Repeticiones de Minisatélite , Pakistán , Polisacáridos Bacterianos/genética , Salmonella typhi/clasificación , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Virulencia , Factores de Virulencia/genética
5.
EXCLI J ; 14: 213-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26417360

RESUMEN

Salmonella enterica serovar Typhi (S. Typhi) is a human restricted pathogen. It biosynthesizes a virulence capsular polysaccharide named as Vi antigen. S. Typhi regulates expression of genes involved in the biosynthesis of Vi antigen in response to osmolarity. Beside Vi-positive isolates, Vi-negative (acapsulated) isolates are also pathogenic. However, Vi-positive isolates are more prevalent. The present study was planned to investigate comparative growth of Vi-positive and Vi-negative S. Typhi isolates in an ex vivo human whole blood model. Four isolates of each type were tested for growth in human whole blood and in an enrichment medium (Tryptic soy broth-TSB) as a control. It was found that capsulated (Vi-positive) strains formed smooth circular colonies and grew with shorter lag and generation time than Vi-negative isolates. Overall growth pattern of S. Typhi isolates both in vitro and ex vivo conditions showed that Vi-positive isolates grew at a faster rate. Especially in human blood, the lag time of acapsulated isolates was almost doubled as compared to capsulated S. Typhi isolates. It was also observed that Vi-negative isolates reduced in number up to 81 % during the first 12 hours of incubation in human whole blood. Interestingly, both types of isolates had similar growth curve in TSB indicating that Vi capsule is dispensable for bacterial growth in vitro. This study shows for the first time that absence of capsular antigen retards the growth of Vi-negative isolates on initial contact with human blood, but with passage of time they adjust themselves according to the new environment.

6.
Bioinformation ; 5(6): 271-6, 2010 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-21364831

RESUMEN

MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...