Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 40(27): 4538-4551, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34120142

RESUMEN

SOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function.


Asunto(s)
Dinámicas Mitocondriales , Homeostasis , Factores de Intercambio de Guanina Nucleótido ras
2.
Mol Cell Biol ; 38(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29844066

RESUMEN

Using Sos1 knockout (Sos1-KO), Sos2-KO, and Sos1/2 double-knockout (Sos1/2-DKO) mice, we assessed the functional role of Sos1 and Sos2 in skin homeostasis under physiological and/or pathological conditions. Sos1 depletion resulted in significant alterations of skin homeostasis, including reduced keratinocyte proliferation, altered hair follicle and blood vessel integrity in dermis, and reduced adipose tissue in hypodermis. These defects worsened significantly when both Sos1 and Sos2 were absent. Simultaneous Sos1/2 disruption led to severe impairment of the ability to repair skin wounds, as well as to almost complete ablation of the neutrophil-mediated inflammatory response in the injury site. Furthermore, Sos1 disruption delayed the onset of tumor initiation, decreased tumor growth, and prevented malignant progression of papillomas in a DMBA (7,12-dimethylbenz[α]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate)-induced skin carcinogenesis model. Finally, Sos1 depletion in preexisting chemically induced papillomas resulted also in decreased tumor growth, probably linked to significantly reduced underlying keratinocyte proliferation. Our data unveil novel, distinctive mechanistic roles of Sos 1 and Sos2 in physiological control of skin homeostasis and wound repair, as well as in pathological development of chemically induced skin tumors. These observations underscore the essential role of Sos proteins in cellular proliferation and migration and support the consideration of these RasGEFs as potential biomarkers/therapy targets in Ras-driven epidermal tumors.


Asunto(s)
Proteína SOS1/metabolismo , Neoplasias Cutáneas/etiología , Piel/metabolismo , Proteínas Son Of Sevenless/metabolismo , Animales , Carcinogénesis , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Homeostasis , Ratones , Ratones Noqueados , Neovascularización Fisiológica , Papiloma/metabolismo , Papiloma/patología , Proteína SOS1/deficiencia , Proteína SOS1/genética , Piel/irrigación sanguínea , Piel/citología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Proteínas Son Of Sevenless/deficiencia , Proteínas Son Of Sevenless/genética , Cicatrización de Heridas
3.
Mol Cell Biol ; 33(22): 4562-78, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24043312

RESUMEN

Sos1 and Sos2 are ubiquitously expressed, universal Ras guanine nucleotide exchange factors (Ras-GEFs) acting in multiple signal transduction pathways activated by upstream cellular kinases. The embryonic lethality of Sos1 null mutants has hampered ascertaining the specific in vivo contributions of Sos1 and Sos2 to processes controlling adult organism survival or development of hematopoietic and nonhematopoietic organs, tissues, and cell lineages. Here, we generated a tamoxifen-inducible Sos1-null mouse strain allowing analysis of the combined disruption of Sos1 and Sos2 (Sos1/2) during adulthood. Sos1/2 double-knockout (DKO) animals died precipitously, whereas individual Sos1 and Sos2 knockout (KO) mice were perfectly viable. A reduced percentage of total bone marrow precursors occurred in single-KO animals, but a dramatic depletion of B-cell progenitors was specifically detected in Sos1/2 DKO mice. We also confirmed a dominant role of Sos1 over Sos2 in early thymocyte maturation, with almost complete thymus disappearance and dramatically higher reduction of absolute thymocyte counts in Sos1/2 DKO animals. Absolute counts of mature B and T cells in spleen and peripheral blood were unchanged in single-KO mutants, while significantly reduced in Sos1/2 DKO mice. Our data demonstrate functional redundancy between Sos1 and Sos2 for homeostasis and survival of the full organism and for development and maturation of T and B lymphocytes.


Asunto(s)
Linfopoyesis , Proteína SOS1/metabolismo , Proteínas Son Of Sevenless/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Recuento de Células , Femenino , Homeostasis , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo , Proteína SOS1/genética , Proteínas Son Of Sevenless/genética , Linfocitos T/citología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...