Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38823388

RESUMEN

The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.

2.
mBio ; 15(4): e0307823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38511961

RESUMEN

Cryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Criptococosis , Cryptococcus neoformans , Meningitis , Ratones , Animales , Microglía , Criptococosis/microbiología , Encéfalo/microbiología , Mamíferos
3.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38259065

RESUMEN

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Asunto(s)
Candida albicans , Glucanos , beta-Glucanos , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Hipoxia/metabolismo , Lactatos/metabolismo , Pared Celular/metabolismo
4.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014111

RESUMEN

The fungus Cryptococcus neoformans causes lethal meningitis in humans with weakened immune systems and is estimated to account for 10-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this environmental fungus evades the immune system and invades the mammalian brain before the onset of overt symptoms. To investigate the dynamics of C. neoformans tissue invasion, we mapped early fungal localisation and host cell interactions at early times in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. Made possible by these techniques, we confirm high fungal burden in mouse upper airway turbinates after nasal inoculation. Surprisingly, most yeasts in turbinates were titan cells, indicating this microenvironment enables titan cell formation with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, via imaging C. neoformans within blood vessels of mouse lungs and finding viable fungi in the bloodstream of mice a few days after intranasal infection, suggesting that bloodstream access can occur via lung alveoli. In a model of systemic cryptococcosis, we show that as early as 24 h post infection, majority of C. neoformans cells traversed the blood-brain barrier, and are engulfed or in close proximity to microglia. Our work establishes that C. neoformans can breach multiple tissue barriers within the first days of infection. This work presents a new method for investigating cryptococcal invasion mechanisms and demonstrates microglia as the primary cells responding to C. neoformans invasion.

5.
Proc Natl Acad Sci U S A ; 120(39): e2217612120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722040

RESUMEN

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment influencing cancer progression. Besides shaping the extracellular matrix, these fibroblasts provide signaling factors to facilitate tumor survival and alter tumor behavior. In gastric cancer, one crucial signaling pathway influencing invasion and metastasis is the Wnt/Planar Cell Polarity (PCP) signaling. The crucial PCP ligand in this context is WNT5A, which is produced by the CAFs, and gastric cancer cells react upon this signal by enhanced polarized migration. Why gastric cancer cells respond to this signal is still unclear, as their expression level for the central WNT5A receptor, ROR2, is very low. Here, we show that CAFs display long and branched filopodia that form an extensive, complex network engulfing gastric cancer cells, such as the gastric cancer cell line AGS. CAFs have a significantly higher expression level of ROR2 than normal gastric fibroblasts and AGS cells. By high-resolution imaging, we observe a direct transfer of fluorescently tagged ROR2 from CAF to AGS cells by signaling filopodia, known as cytonemes. Surprisingly, we find that the transferred ROR2 complexes can activate Wnt/JNK signaling in AGS cells. Consistently, blockage of ROR2 function in the CAFs leads to reduced paracrine Wnt/JNK signaling, cell polarization, and migration of the receiving AGS cells. Complementary, enhanced migration via paracrine ROR2 transfer was observed in a zebrafish in vivo model. These findings demonstrate a fresh role for cytoneme-mediated signaling in the tumor microenvironment. Cytonemes convey Wnt receptors from CAFs to gastric cancer cells, allowing them to respond to Wnt/PCP signals.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Animales , Neoplasias Gástricas/genética , Microambiente Tumoral , Vía de Señalización Wnt , Pez Cebra , Humanos , Línea Celular Tumoral
6.
Biomedicines ; 11(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37239045

RESUMEN

BACKGROUND: Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, and the resulting cyclic dinucleotide, 2'3-cGAMP, binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS-STING pathway in human neurodegenerative diseases. METHODS: Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer's disease (n = 6), Parkinson's disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-ß, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1-400 µM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarker interferon-ß release and changes in ICAM-1 integrin expression. RESULTS: In neurodegenerative brain diseases, elevated STING protein was observed mainly in brain endothelial cells and neurons, compared to non-neurodegenerative control tissues where STING protein staining was weaker. Interestingly, a higher STING presence was associated with toxic protein aggregates (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander's coefficient; p < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS and cell surface ICAM. In addition, a dose response in the secretion of interferon-ß was observed, but it failed to reach statistical significance. CONCLUSIONS: The histological evidence shows that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data, this suggests that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage, resulting in downstream neuroinflammation; hence, this pathway may be a target for future STING therapeutics.

7.
Development ; 149(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36398796

RESUMEN

Propagation of human naïve pluripotent stem cells (nPSCs) relies on the inhibition of MEK/ERK signalling. However, MEK/ERK inhibition also promotes differentiation into trophectoderm (TE). Therefore, robust self-renewal requires suppression of TE fate. Tankyrase inhibition using XAV939 has been shown to stabilise human nPSCs and is implicated in TE suppression. Here, we dissect the mechanism of this effect. Tankyrase inhibition is known to block canonical Wnt/ß-catenin signalling. However, we show that nPSCs depleted of ß-catenin remain dependent on XAV939. Rather than inhibiting Wnt, we found that XAV939 prevents TE induction by reducing activation of YAP, a co-factor of TE-inducing TEAD transcription factors. Tankyrase inhibition stabilises angiomotin, which limits nuclear accumulation of YAP. Upon deletion of angiomotin-family members AMOT and AMOTL2, nuclear YAP increases and XAV939 fails to prevent TE induction. Expression of constitutively active YAP similarly precipitates TE differentiation. Conversely, nPSCs lacking YAP1 or its paralog TAZ (WWTR1) resist TE differentiation and self-renewal efficiently without XAV939. These findings explain the distinct requirement for tankyrase inhibition in human but not in mouse nPSCs and highlight the pivotal role of YAP activity in human naïve pluripotency and TE differentiation. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Angiomotinas , Células Madre Pluripotentes , Tanquirasas , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , beta Catenina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Tanquirasas/metabolismo , Vía de Señalización Wnt , Células Madre Pluripotentes/citología
8.
mBio ; 13(6): e0260522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36218369

RESUMEN

Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as ß-1,3-glucan. In C. albicans, most ß-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some ß-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed ß-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that ß-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed ß-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces ß-1,3-glucan exposure at bud scars and at punctate foci. ß-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates ß-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that ß-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP ß-1,3-glucan, which is an essential component of its cell wall. Most of this ß-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed ß-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of ß-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that ß-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.


Asunto(s)
Candida albicans , beta-Glucanos , Antifúngicos/farmacología , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Cicatriz/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucanos/metabolismo , Lactatos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos
9.
Mar Pollut Bull ; 160: 111552, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32861936

RESUMEN

We compare the toxicity of microplastics, microfibres and nanoplastics on mussels. Mussels (Mytilus spp.) were exposed to 500 ng mL-1 of 20 µm polystyrene microplastics, 10 × 30 µm polyamide microfibres or 50 nm polystyrene nanoplastics for 24 h or 7 days. Biomarkers of immune response, oxidative stress response, lysosomal destabilisation and genotoxic damage were measured in haemolymph, digestive gland and gills. Microplastics and microfibres were observed in the digestive glands, with significantly higher plastic concentrations after 7-days exposure (ANOVA, P < 0.05). Nanoplastics had a significant effect on hyalinocyte-granulocyte ratios (ANOVA, P < 0.05), indicative of a heightened immune response. SOD activity was significantly increased followed 24 h exposure to plastics (two-way ANOVA, P < 0.05), but returned to normal levels after 7-days exposure. No evidence of lysosomal destabilisation or genotoxic damage was observed from any form of plastic. The study highlights how particle size is a key factor in plastic particulate toxicity.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Branquias/química , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Arch Toxicol ; 90(9): 2077-2107, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27318802

RESUMEN

There are concerns that regulatory toxicity tests are not fit for purpose for engineered nanomaterials (ENMs) or need modifications. The aim of the current study was to evaluate the OECD 210 fish, early-life stage toxicity test for use with TiO2 ENMs, Ag ENMs, and MWCNT. Both TiO2 ENMS (≤160 mg l(-1)) and MWCNT (≤10 mg l(-1)) showed limited acute toxicity, whilst Ag ENMs were acutely toxic to zebrafish, though less so than AgNO3 (6-day LC50 values of 58.6 and 5.0 µg l(-1), respectively). Evidence of delayed hatching, decreased body length and increased muscle width in the tail was seen in fish exposed to Ag ENMs. Oedema (swollen yolk sacs) was also seen in fish from both Ag treatments with, for example, mean yolk sac volumes of 17, 35 and 39 µm(3) for the control, 100 µg l(-1) Ag ENMs and 5 µg l(-1) AgNO3 treatments, respectively. Among the problems with the standard test guidelines was the inability to maintain the test solutions within ±20 % of nominal concentrations. Pronounced settling of the ENMs in some beakers also made it clear the fish were not being exposed to nominal concentrations. To overcome this, the exposure apparatus was modified with the addition of an exposure chamber that ensured mixing without damaging the delicate embryos/larvae. This allowed more homogeneous ENM exposures, signified by improved measured concentrations in the beakers (up to 85.7 and 88.1 % of the nominal concentrations from 10 mg l(-1) TiO2 and 50 µg l(-1) Ag ENM exposures, respectively) and reduced variance between measurements compared to the original method. The recommendations include: that the test is conducted using exposure chambers, the use of quantitative measurements for assessing hatching and morphometrics, and where there is increased sensitivity of larvae over embryos to conduct a shorter, larvae-only toxicity test with the ENMs.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Nanoestructuras/toxicidad , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Conducta Animal/efectos de los fármacos , Bioensayo , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/patología , Diseño de Equipo , Humanos , Dosificación Letal Mediana , Reproducibilidad de los Resultados , Medición de Riesgo , Natación , Factores de Tiempo , Pruebas de Toxicidad/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...