Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Adv Kidney Dis Health ; 30(5): 468-476, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-38097335

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) is the rare and usually early-onset form of polycystic kidney disease with a typical clinical presentation of enlarged cystic kidneys and liver involvement with congenital hepatic fibrosis or Caroli syndrome. ARPKD remains a clinical challenge in pediatrics, frequently requiring continuous and long-term multidisciplinary treatment. In this review, we aim to give an overview over clinical aspects of ARPKD and recent developments in our understanding of disease progression, risk patterns, and treatment of ARPKD.


Asunto(s)
Enfermedad de Caroli , Riñón Poliquístico Autosómico Recesivo , Niño , Humanos , Riñón Poliquístico Autosómico Recesivo/diagnóstico , Receptores de Superficie Celular , Pronóstico , Cirrosis Hepática/diagnóstico , Enfermedad de Caroli/diagnóstico
2.
Front Cell Dev Biol ; 11: 1270980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125876

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.

4.
EMBO Mol Med ; 15(7): e17528, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37292039

RESUMEN

Osteogenesis imperfecta (OI) is a hereditary skeletal disorder primarily affecting collagen type I structure and function, causing bone fragility and occasionally versatile extraskeletal symptoms. This study expands the spectrum of OI-causing TAPT1 mutations and links extracellular matrix changes to signaling regulation.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/diagnóstico , Colágeno Tipo I/genética , Matriz Extracelular , Mutación , Transducción de Señal
5.
BMC Nephrol ; 24(1): 86, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37013475

RESUMEN

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a significant cause of morbidity and mortality in infants and children. In severe cases bilateral nephrectomies are considered but may be associated with significant neurological complications and life-threatening hypotension. CASE PRESENTATION: We describe a case of a 17 months old boy with genetically confirmed ARPKD who underwent sequential bilateral nephrectomies at the age of 4 and 10 months. Following the second nephrectomy the boy was started on continuous cycling peritoneal dialysis with blood pressure on the lower range. At the age of 12 months after a few days of poor feeding at home the boy experienced a severe episode of hypotension and coma of Glasgow Come Scale of three. Brain magnetic-resonance imaging (MRI) showed signs of hemorrhage, cytotoxic cerebral edema and diffuse cerebral atrophy. During the subsequent 72 h he developed seizures requiring anti-epileptic drug therapy, gradually regained consciousness but remained significantly hypotensive after discontinuation of vasopressors. Thus, he received high doses of sodium chloride orally and intraperitoneally as well as midodrine hydrochloride. His ultrafiltration (UF) was targeted to keep him in mild-to-moderate fluid overload. After two months of stable condition the patient started to develop hypertension requiring four antihypertensive medications. After optimizing peritoneal dialysis to avoid fluid overload and discontinuation of sodium chloride the antihypertensives were discontinued, but hyponatremia with hypotensive episodes reoccurred. Sodium chloride was reintroduced resulting in recurrent salt-dependent hypertension. CONCLUSIONS: Our case report illustrates an unusual course of blood pressure changes following bilateral nephrectomies in an infant with ARPKD and the particular importance of tight regulation of sodium chloride supplementation. The case adds to the scarce literature about clinical sequences of bilateral nephrectomies in infants, and as well highlights the challenge of managing blood pressure in these patients. Further research on the mechanisms and management of blood pressure control is clearly needed.


Asunto(s)
Hipertensión , Hipotensión , Riñón Poliquístico Autosómico Recesivo , Humanos , Lactante , Masculino , Niño , Riñón Poliquístico Autosómico Recesivo/complicaciones , Riñón Poliquístico Autosómico Recesivo/cirugía , Cloruro de Sodio , Nefrectomía/métodos , Hipertensión/complicaciones , Hipotensión/complicaciones , Cloruro de Sodio Dietético
6.
Kidney Int Rep ; 8(3): 455-466, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938073

RESUMEN

Introduction: Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic cause of kidney failure. Because of the heterogeneity in disease progression in ADPKD, parameters predicting future outcome are important. The disease-causing genetic variant is one of these parameters. Methods: A multiplex polymerase chain reaction (PCR)-based panel (MPP) was established for analysis of 6 polycystic kidney disease (PKD) genes (PKD1, PKD2, HNF1B, GANAB, DZIP1L, and PKHD1) in 441 patients with ADPKD. Selected patients were additionally sequenced using Sanger sequencing or a custom enrichment-based gene panel. Results were combined with clinical characteristics to assess the impact of genetic data on clinical decision-making. Variants of unclear significance (VUS) were considered diagnostic based on a classic ADPKD clinical phenotype. Results: Using the MPP, disease-causing variants were detected in 65.3% of patients. Sanger sequencing and the custom gene panel in 32 patients who were MPP-negative revealed 20 variants missed by MPP, (estimated overall false negative rate 24.6%, false-positive rate 9.4%). Combining clinical and genetic data revealed that knowledge of the genotype could have impacted the treatment decision in 8.2% of patients with a molecular genetic diagnosis. Sequencing only the PKD1 pseudogene homologous region in MPP-negative patients resulted in an acceptable false-negative rate of 3.28%. Conclusion: The MPP yields rapid genotype information at lower costs and allows for simple extension of the panel for new disease genes. Additional sequencing of the PKD1 pseudogene homologous region is required in negative cases. Access to genotype information even in settings with limited resources is important to allow for optimal patient counseling in ADPKD.

7.
Kidney360 ; 4(3): 291-293, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996292
8.
BMC Nephrol ; 24(1): 33, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782137

RESUMEN

PURPOSE: Autosomal recessive polycystic kidney disease (ARPKD) is a hereditary condition characterized by massive kidney enlargement and developmental liver defects. Potential consequences during childhood include the need for kidney replacement therapy (KRT). We report the design of 2 ongoing clinical trials (Study 204, Study 307) to evaluate safety, tolerability, and efficacy of tolvaptan in children with ARPKD. METHODS: Both trials are of multinational, multicenter, open-label design. Age range at enrollment is 28 days to < 12 weeks in Study 204 and 28 days to < 18 years in Study 307. Subjects in both studies must have a clinical diagnosis of ARPKD, and those in Study 204 must additionally have signs indicative of risk of rapid progression to KRT, namely, all of: nephromegaly, multiple kidney cysts or increased kidney echogenicity suggesting microcysts, and oligohydramnios or anhydramnios. Target enrollment is 20 subjects for Study 204 and ≥ 10 subjects for Study 307. RESULTS: Follow-up is 24 months in Study 204 (with optional additional treatment up to 36 months) and 18 months in Study 307. Outcomes include safety, tolerability, change in kidney function, and percentage of subjects requiring KRT relative to historical data. Regular safety assessments monitor for possible adverse effects of treatment on parameters such as liver function, kidney function, fluid balance, electrolyte levels, and growth trajectory, with increased frequency of monitoring following tolvaptan initiation or dose escalation. CONCLUSIONS: These trials will provide data on tolvaptan safety and efficacy in a population without disease-specific treatment options. TRIAL REGISTRATION: Study 204: EudraCT 2020-005991-36; Study 307: EudraCT 2020-005992-10.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Riñón Poliquístico Autosómico Recesivo , Humanos , Niño , Recién Nacido , Tolvaptán/uso terapéutico , Riñón Poliquístico Autosómico Recesivo/diagnóstico por imagen , Riñón Poliquístico Autosómico Recesivo/tratamiento farmacológico , Riñón , Estudios Longitudinales , Quistes/tratamiento farmacológico , Antagonistas de los Receptores de Hormonas Antidiuréticas/efectos adversos
9.
Kidney Med ; 5(3): 100596, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36698747

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is part of a spectrum of inherited diseases that also includes autosomal recessive polycystic kidney disease, autosomal dominant polycystic liver disease, and an expanding group of recessively inherited disorders collectively termed hepatorenal fibrocystic disorders. ADPKD is the most common monogenic disorder frequently leading to chronic kidney failure with an estimated prevalence of 12 million people worldwide. Currently, only one drug (tolvaptan) has been approved by regulatory agencies as disease-modifying therapy for ADPKD, but, given its mechanism of action and side effect profile, the need for an improved therapy for ADPKD remains a priority. Although significant regulatory progress has been made, with qualification of total kidney volume as a prognostic enrichment biomarker and its later designation as a reasonably likely surrogate endpoint for progression of ADPKD within clinical trials, further work is needed to accelerate drug development efforts for all forms of PKD. In May 2021, the PKD Outcomes Consortium at the Critical Path Institute and the PKD Foundation organized a PKD Regulatory Summit to spur conversations among patients, industry, academic, and regulatory stakeholders regarding future development of tools and drugs for ADPKD and autosomal recessive polycystic kidney disease. This Special Report reviews the key points discussed during the summit and provides future direction related to PKD drug development tools.

10.
Kidney Int Rep ; 7(9): 2016-2028, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090483

RESUMEN

Introduction: Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We assessed differences in kidney survival, impact of variant type, and the association of clinical characteristics with declining kidney function. Methods: Data was obtained from 3 independent sources, namely the network for early onset cystic kidney diseases clinical registry (n = 105), an online survey sent out to the European Reference Network for Rare Kidney Diseases (n = 60), and a literature search (n = 218). Results: A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85 NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3-12.0); NPHP1, 13.5 years (interquartile range 10.5-16.5); NPHP4, 16.0 years (interquartile range 11.0-25.0); and NPHP11/TMEM67, 19.0 years (interquartile range 8.7-28.0). Kidney survival was significantly associated with the underlying variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio 2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was linked to an accelerated glomerular filtration rate (GFR) decline. Conclusion: The presented data will enable clinicians to better estimate kidney prognosis of distinct patients with NPH and thereby allow personalized counseling.

11.
Cell Death Dis ; 13(9): 806, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127323

RESUMEN

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.


Asunto(s)
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Animales , Neoplasias Encefálicas/genética , Cilios/metabolismo , ADN Helicasas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Transducción de Señal , Teratoma/genética , Teratoma/patología , Factores de Transcripción/genética , Factores de Transcripción/uso terapéutico
13.
Kidney Int Rep ; 7(7): 1643-1652, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35812281

RESUMEN

Introduction: Autosomal recessive polycystic kidney disease (ARPKD) is a rare monogenic disorder characterized by early onset fibrocystic hepatorenal changes. Previous reports have documented pronounced phenotypic variability even among siblings in terms of patient survival. The underlying causes for this clinical variability are incompletely understood. Methods: We present the longitudinal clinical courses of 35 sibling pairs included in the ARPKD registry study ARegPKD, encompassing data on primary manifestation, prenatal and perinatal findings, genetic testing, and family history, including kidney function, liver involvement, and radiological findings. Results: We identified 70 siblings from 35 families with a median age of 0.7 (interquartile range 0.1-6.0) years at initial diagnosis and a median follow-up time of 3.5 (0.2-6.2) years. Data on PKHD1 variants were available for 37 patients from 21 families. There were 8 patients from 7 families who required kidney replacement therapy (KRT) during follow-up. For 44 patients from 26 families, antihypertensive therapy was documented. Furthermore, 37 patients from 24 families had signs of portal hypertension with 9 patients from 6 families having substantial hepatic complications. Interestingly, pronounced variability in the clinical course of functional kidney disease was documented in only 3 sibling pairs. In 17 of 20 families of our cohort of neonatal survivors, siblings had only minor differences of kidney function at a comparable age. Conclusion: In patients surviving the neonatal period, our longitudinal follow-up of 70 ARPKD siblings from 35 families revealed comparable clinical courses of kidney and liver diseases in most families. The data suggest a strong impact of the underlying genotype.

14.
Nephrol Dial Transplant ; 37(12): 2351-2362, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-35772019

RESUMEN

Kidney dysplasia is one of the most frequent causes of chronic kidney failure in children. While dysplasia is a histological diagnosis, the term 'kidney dysplasia' is frequently used in daily clinical life without histopathological confirmation. Clinical parameters of kidney dysplasia have not been clearly defined, leading to imprecise communication amongst healthcare professionals and patients. This lack of consensus hampers precise disease understanding and the development of specific therapies. Based on a structured literature search, we here suggest a common basis for clinical, imaging, genetic, pathological and basic science aspects of non-obstructive kidney dysplasia associated with functional kidney impairment. We propose to accept hallmark sonographic findings as surrogate parameters defining a clinical diagnosis of dysplastic kidneys. We suggest differentiated clinical follow-up plans for children with kidney dysplasia and summarize established monogenic causes for non-obstructive kidney dysplasia. Finally, we point out and discuss research gaps in the field.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal , Anomalías Urogenitales , Niño , Humanos , Riñón/patología , Enfermedades Renales/patología , Insuficiencia Renal/patología
15.
Orphanet J Rare Dis ; 17(1): 122, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264234

RESUMEN

BACKGROUND: In pediatric hereditary cystic kidney diseases, epithelial cell defects mostly result from rare, autosomal recessively inherited pathogenic variants in genes encoding proteins of the cilia-centrosome complex. Consequences of individual gene variants on epithelial function are often difficult to predict and can furthermore depend on the patient's genetic background. Here, we studied urine-derived renal tubular epithelial cells (URECs) from genetically determined, pediatric cohorts of different hereditary cystic kidney diseases, comprising autosomal recessive polycystic kidney disease, nephronophthisis (NPH) and the Bardet Biedl syndrome (BBS). UREC characteristics and behavior in epithelial function-related 3D cell culture were compared in order to identify gene and variant-specific properties and to determine aspects of epithelial (cell) dysfunction. RESULTS: UREC preparations from patients (19) and healthy controls (39) were studied in a qualitative and quantitative manner using primary cells cultured for up-to 21 days. In patients with biallelic pathogenic variants in PKHD1 or NPHP genes, we were able to receive satisfactory amounts of URECs of reproducible quality. In BBS patients, UREC yield was lower and more dependent on the individual genotype. In contrast, in UREC preparations derived from healthy controls, no predictable and satisfactory outcome could be established. Considering cell proliferation, tubular origin and epithelial properties in 2D/3D culture conditions, we observed distinct and reproducible epithelial properties of URECs. In particular, the cells from patients carrying PKHD1 variants were characterized by a high incidence of defective morphogenesis of monolayered spheroids-a property proposed to be suitable for corrective intervention. Furthermore, we explored different ways to generate reference cell lines for both-patients and healthy controls-in order to eliminate restrictions in cell number and availability of primary URECs. CONCLUSIONS: Ex vivo 3D cell culture of primary URECs represents a valuable, non-invasive source to evaluate epithelial cell function in kidney diseases and as such helps to elucidate the functional consequences of rare genetic disorders. In combination with genetically defined control cell lines to be generated in the future, the cultivation of primary URECs could become a relevant tool for testing personalized treatment of epithelial dysfunction in patients with hereditary cystic kidney disease.


Asunto(s)
Enfermedades Renales Quísticas , Riñón Poliquístico Autosómico Recesivo , Niño , Genotipo , Humanos , Riñón/patología , Enfermedades Renales Quísticas/patología , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/patología , Proteínas/genética
16.
Nat Rev Urol ; 19(5): 295-303, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35136187

RESUMEN

Fetal lower urinary tract obstruction (LUTO) is associated with high mortality and postnatal morbidity caused by lung hypoplasia and impaired kidney function. Specific diagnostic features that can guide clinical approach and decisions are lacking; thus, the European Reference Network for Rare Kidney Diseases established a work group to develop recommendations regarding the clinical definition, diagnosis and management of prenatally detected LUTO. The work group recommends the use of antero-posterior diameter of renal pelvis as the most reliable parameter for suspecting obstructive uropathies and for suspecting prenatal LUTO in the presence of fetal megacystis. Regarding prenatal and postnatal prognosis of fetuses with LUTO, the risk of fetal and neonatal death depends on the presence of oligohydramnios or anhydramnios before 20 weeks' gestation, whereas the risk of kidney replacement therapy cannot be reliably foreseen before birth. Parents of fetuses with LUTO must be referred to a tertiary obstetric centre with multidisciplinary expertise in prenatal and postnatal management of obstructive uropathies, and vesico-amniotic shunt placement should be offered in selected instances, as it increases perinatal survival of fetuses with LUTO.


Asunto(s)
Oligohidramnios , Enfermedades Uretrales , Obstrucción Uretral , Consenso , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Estudios Retrospectivos , Ultrasonografía Prenatal/efectos adversos , Obstrucción Uretral/diagnóstico , Obstrucción Uretral/etiología , Obstrucción Uretral/terapia , Vejiga Urinaria , Anomalías Urogenitales , Reflujo Vesicoureteral
17.
J Inherit Metab Dis ; 45(2): 169-182, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741542

RESUMEN

Isolated sulfite oxidase deficiency (ISOD) is a rare recessive and infantile lethal metabolic disorder, which is caused by functional loss of sulfite oxidase (SO) due to mutations of the SUOX gene. SO is a mitochondrially localized molybdenum cofactor (Moco)- and heme-dependent enzyme, which catalyzes the vital oxidation of toxic sulfite to sulfate. Accumulation of sulfite and sulfite-related metabolites such as S-sulfocysteine (SSC) are drivers of severe neurodegeneration leading to early childhood death in the majority of ISOD patients. Full functionality of SO is dependent on correct insertion of the heme cofactor and Moco, which is controlled by a highly orchestrated maturation process. This maturation involves the translation in the cytosol, import into the intermembrane space (IMS) of mitochondria, cleavage of the mitochondrial targeting sequence, and insertion of both cofactors. Moco insertion has proven as the crucial step in this maturation process, which enables the correct folding of the homodimer and traps SO in the IMS. Here, we report on a novel ISOD patient presented at 17 months of age carrying the homozygous mutation NM_001032386.2 (SUOX):c.1097G > A, which results in the expression of SO variant R366H. Our studies show that histidine substitution of Arg366, which is involved in coordination of the Moco-phosphate, causes a severe reduction in Moco insertion efficacy in vitro and in vivo. Expression of R366H in HEK SUOX-/- cells mimics the phenotype of patient's fibroblasts, representing a loss of SO expression and specific activity. Our studies disclose a general paradigm for a kinetic defect in Moco insertion into SO caused by residues involved in Moco coordination resulting in the case of R366H in an attenuated form of ISOD.


Asunto(s)
Metaloproteínas , Sulfito-Oxidasa , Errores Innatos del Metabolismo de los Aminoácidos , Preescolar , Coenzimas/genética , Coenzimas/metabolismo , Hemo/genética , Humanos , Metaloproteínas/metabolismo , Cofactores de Molibdeno , Pteridinas/metabolismo , Sulfito-Oxidasa/deficiencia , Sulfito-Oxidasa/genética , Sulfitos
18.
Mol Cell Pediatr ; 8(1): 20, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34882278

RESUMEN

Polycystic kidney diseases (PKD) are severe forms of genetic kidney disorders. The two main types of PKD are autosomal recessive and autosomal dominant PKD (ARPKD, ADPKD). While ARPKD typically is a disorder of early childhood, patients with ADPKD often remain pauci-symptomatic until adulthood even though formation of cysts in the kidney already begins in children. There is clinical and genetic overlap between both entities with very variable clinical courses. Subgroups of very early onset ADPKD may for example clinically resemble ARPKD. The basis of the clinical variability in both forms of PKD is not well understood and there are also limited prediction markers for disease progression for daily clinical life or surrogate endpoints for clinical trials in ARPKD or early ADPKD.As targeted therapeutic approaches to slow disease progression in PKD are emerging, it is becoming more important to reliably identify patients at risk for rapid progression as they might benefit from early therapy. Over the past years regional, national and international data collections to jointly analyze the clinical courses of PKD patients have been set up. The clinical observations are complemented by genetic studies and biorepositories as well as basic science approaches to elucidate the underlying molecular mechanisms in the PKD field. These approaches may serve as a basis for the development of novel therapeutic interventions in specific subgroups of patients. In this article we summarize some of the recent developments in the field with a focus on kidney involvement in PKD during childhood and adolescence and findings obtained in pediatric cohorts.

19.
Sci Rep ; 11(1): 21677, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737334

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) is characterized by bilateral fibrocystic changes resulting in pronounced kidney enlargement. Impairment of kidney function is highly variable and widely available prognostic markers are urgently needed as a base for clinical decision-making and future clinical trials. In this observational study we analyzed the longitudinal development of sonographic kidney measurements in a cohort of 456 ARPKD patients from the international registry study ARegPKD. We furthermore evaluated correlations of sonomorphometric findings and functional kidney disease with the aim to describe the natural disease course and to identify potential prognostic markers. Kidney pole-to-pole (PTP) length and estimated total kidney volume (eTKV) increase with growth throughout childhood and adolescence despite individual variability. Height-adjusted PTP length decreases over time, but such a trend cannot be seen for height-adjusted eTKV (haeTKV) where we even observed a slight mean linear increase of 4.5 ml/m per year during childhood and adolescence for the overall cohort. Patients with two null PKHD1 variants had larger first documented haeTKV values than children with missense variants (median (IQR) haeTKV 793 (450-1098) ml/m in Null/null, 403 (260-538) ml/m in Null/mis, 230 (169-357) ml/m in Mis/mis). In the overall cohort, estimated glomerular filtration rate decreases with increasing haeTKV (median (IQR) haeTKV 210 (150-267) ml/m in CKD stage 1, 472 (266-880) ml/m in stage 5 without kidney replacement therapy). Strikingly, there is a clear correlation between haeTKV in the first eighteen months of life and kidney survival in childhood and adolescence with ten-year kidney survival rates ranging from 20% in patients of the highest to 94% in the lowest quartile. Early childhood haeTKV may become an easily obtainable prognostic marker of kidney disease in ARPKD, e.g. for the identification of patients for clinical studies.


Asunto(s)
Riñón/fisiopatología , Riñón Poliquístico Autosómico Recesivo/mortalidad , Riñón Poliquístico Autosómico Recesivo/fisiopatología , Adolescente , Biomarcadores , Niño , Preescolar , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Tasa de Filtración Glomerular/fisiología , Humanos , Lactante , Cirrosis Hepática/fisiopatología , Estudios Longitudinales , Masculino , Tamaño de los Órganos/genética , Tamaño de los Órganos/fisiología , Riñón Poliquístico Autosómico Recesivo/metabolismo , Pronóstico , Receptores de Superficie Celular/genética , Insuficiencia Renal Crónica/fisiopatología , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA