Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Pflugers Arch ; 474(3): 315-342, 2022 03.
Article En | MEDLINE | ID: mdl-35098357

The ruminal epithelium absorbs large quantities of NH4+ and Ca2+. A role for TRPV3 has emerged, but data on TRPV4 are lacking. Furthermore, short-chain fatty acids (SCFA) stimulate ruminal Ca2+ and NH4+ uptake in vivo and in vitro, but the pathway is unclear. Sequencing of the bovine homologue (bTRPV4) revealed 96.79% homology to human TRPV4. Two commercial antibodies were tested using HEK-293 cells overexpressing bTRPV4, which in ruminal protein detected a weak band at the expected ~ 100 kDa and several bands ≤ 60 kDa. Immunofluorescence imaging revealed staining of the apical membrane of the stratum granulosum for bTRPV3 and bTRPV4, with cytosolic staining in other layers of the ruminal epithelium. A similar expression pattern was observed in a multilayered ruminal cell culture which developed resistances of > 700 Ω · cm2 with expression of zonula occludens-1 and claudin-4. In Ussing chambers, 2-APB and the TRPV4 agonist GSK1016790A stimulated the short-circuit current across native bovine ruminal epithelia. In whole-cell patch-clamp recordings on HEK-293 cells, bTRPV4 was shown to be permeable to NH4+, K+, and Na+ and highly sensitive to GSK1016790A, while effects of butyrate- were insignificant. Conversely, bTRPV3 was strongly stimulated by 2-APB and by butyrate- (pH 6.4 > pH 7.4), but not by GSK1016790A. Fluorescence calcium imaging experiments suggest that butyrate- stimulates both bTRPV3 and bTRPV4. While expression of bTRPV4 appears to be weaker, both channels are candidates for the ruminal transport of NH4+ and Ca2+. Stimulation by SCFA may involve cytosolic acidification (bTRPV3) and cell swelling (bTRPV4).


Butyrates , TRPV Cation Channels , Animals , Biological Transport/physiology , Butyrates/metabolism , Cattle , Epithelium/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , TRPV Cation Channels/metabolism
2.
Pflugers Arch ; 473(12): 1859-1884, 2021 12.
Article En | MEDLINE | ID: mdl-34664138

Mutations of TRPV3 lead to severe dermal hyperkeratosis in Olmsted syndrome, but whether the mutants are trafficked to the cell membrane or not is controversial. Even less is known about TRPV3 function in intestinal epithelia, although research on ruminants and pigs suggests an involvement in the uptake of NH4+. It was the purpose of this study to measure the permeability of the human homologue (hTRPV3) to NH4+, to localize hTRPV3 in human skin equivalents, and to investigate trafficking of the Olmsted mutant G573S. Immunoblotting and immunostaining verified the successful expression of hTRPV3 in HEK-293 cells and Xenopus oocytes with trafficking to the cell membrane. Human skin equivalents showed distinct staining of the apical membrane of the top layer of keratinocytes with cytosolic staining in the middle layers. Experiments with pH-sensitive microelectrodes on Xenopus oocytes demonstrated that acidification by NH4+ was significantly greater when hTRPV3 was expressed. Single-channel measurements showed larger conductances in overexpressing Xenopus oocytes than in controls. In whole-cell experiments on HEK-293 cells, both enantiomers of menthol stimulated influx of NH4+ in hTRPV3 expressing cells, but not in controls. Expression of the mutant G573S greatly reduced cell viability with partial rescue via ruthenium red. Immunofluorescence confirmed cytosolic expression, with membrane staining observed in a very small number of cells. We suggest that expression of TRPV3 by epithelia may have implications not just for Ca2+ signalling, but also for nitrogen metabolism. Models suggesting how influx of NH4+ via TRPV3 might stimulate skin cornification or intestinal NH4+ transport are discussed.


Ammonia/metabolism , Biological Transport/physiology , Calcium Signaling/physiology , TRPV Cation Channels/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cell Membrane Permeability/physiology , Epithelium/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Keratinocytes/metabolism , Mutation/physiology , Oocytes/metabolism , Patch-Clamp Techniques/methods , Xenopus laevis/metabolism
3.
Pflugers Arch ; 472(6): 693-710, 2020 06.
Article En | MEDLINE | ID: mdl-32458085

Large quantities of ammonia (NH3 or NH4+) are absorbed from the gut, associated with encephalitis in hepatic disease, poor protein efficiency in livestock, and emissions of nitrogenous climate gasses. Identifying the transport mechanisms appears urgent. Recent functional and mRNA data suggest that absorption of ammonia from the forestomach of cattle may involve TRPV3 channels. The purpose of the present study was to sequence the bovine homologue of TRPV3 (bTRPV3), localize the protein in ruminal tissue, and confirm transport of NH4+. After sequencing, bTRPV3 was overexpressed in HEK-293 cells and Xenopus oocytes. An antibody was selected via epitope screening and used to detect the protein in immunoblots of overexpressing cells and bovine rumen, revealing a signal of the predicted ~ 90 kDa. In rumen only, an additional ~ 60 kDa band appeared, which may represent a previously described bTRPV3 splice variant of equal length. Immunohistochemistry revealed staining from the ruminal stratum basale to stratum granulosum. Measurements with pH-sensitive microelectrodes showed that NH4+ acidifies Xenopus oocytes, with overexpression of bTRPV3 enhancing permeability to NH4+. Single-channel measurements revealed that Xenopus oocytes endogenously expressed small cation channels in addition to fourfold-larger channels only observed after expression of bTRPV3. Both endogenous and bTRPV3 channels conducted NH4+, Na+, and K+. We conclude that bTRPV3 is expressed by the ruminal epithelium on the protein level. In conjunction with data from previous studies, a role in the transport of Na+, Ca2+, and NH4+ emerges. Consequences for calcium homeostasis, ruminal pH, and nitrogen efficiency in cattle are discussed.


Ammonia/metabolism , Biological Transport/physiology , Rumen/metabolism , TRPV Cation Channels/metabolism , Animals , Cations/metabolism , Cattle , Cell Line , Epithelium/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Permeability , Sodium/metabolism , Xenopus laevis/metabolism
4.
Anim Sci J ; 89(12): 1692-1700, 2018 Dec.
Article En | MEDLINE | ID: mdl-30280470

Absorption of ammonia from the rumen of cattle decreases nitrogen availability for fermentational protein synthesis, leading to increased competition of cattle with humans for protein and enhancing the release of toxic nitrogenous compounds into the environment. Given that differences in feeding and breeding might induce differences in ruminal ammonia transport, we compared electrophysiological, histological, and molecular biological characteristics of ruminal epithelia of Bos indicus crossbreds (Sahiwal-Mix, SWM) with those of Bos taurus (Holstein-Friesian, HF). As in HF, the stratified cornified epithelium of SWM expressed claudin 1 and 4. Measurements of ammonia flux (HF) and serosal pH (both breeds) suggested that at a mucosal pH of 6.4, net transport primarily occurred as NH4 + . As shown previously for HF, NH4 + induced a concentration-dependent rise in short circuit current (Isc ) in SWM that could be further stimulated by the TRP channel agonist menthol. Relative mRNA expression levels for TRPV3, TRPV4, TRPM6, and TRPM7 were significantly lower in SWM than in HF, with TRPA1 expression near the limit of detection. We conclude that uptake of ammonia from the rumen of both breeds occurs electrogenically as NH4 + with functional and molecular biological evidence pointing towards involvement of TRPV3 and TRPV4.


Ammonia/metabolism , Cattle/genetics , Cattle/metabolism , Hybridization, Genetic/genetics , Hybridization, Genetic/physiology , Rumen/metabolism , Animals , Biological Transport/genetics , Epithelium , In Vitro Techniques , Intestinal Absorption/genetics , Nitrogen/metabolism , Protein Biosynthesis , TRPV Cation Channels/physiology
5.
PLoS One ; 13(3): e0193519, 2018.
Article En | MEDLINE | ID: mdl-29494673

Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.


Ammonium Sulfate/metabolism , Calcium/metabolism , Sodium/metabolism , TRPV Cation Channels/metabolism , Animals , Biological Transport, Active , Cattle , Cloning, Molecular , HEK293 Cells , Humans , Patch-Clamp Techniques , TRPV Cation Channels/genetics
...