Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Immunol ; 15: 1391954, 2024.
Article En | MEDLINE | ID: mdl-38765008

Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.


Antibodies, Bispecific , B7 Antigens , Sarcoma , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Sarcoma/immunology , Sarcoma/drug therapy , B7 Antigens/immunology , B7 Antigens/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Female , Male , Animals , Lymphocyte Activation/immunology , Middle Aged , CD3 Complex/immunology , Aged , Cell Proliferation , Adult
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38612935

Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor immunity in breast cancer. Upregulation of membrane-bound NKG2DLs in breast cancer has been demonstrated by immunohistochemistry. Tumor cells release NKG2DLs via proteolytic cleavage as soluble (s)NKG2DLs, which allows for effective immune escape and is associated with poor prognosis. In this study, we collected serum from 140 breast cancer (BC) and 20 ductal carcinoma in situ (DCIS) patients at the time of initial diagnosis and 20 healthy volunteers (HVs). Serum levels of sNKG2DLs were quantified through the use of ELISA and correlated with clinical data. The analyzed sNKG2DLs were low to absent in HVs and significantly higher in BC patients. For some of the ligands analyzed, higher sNKG2DLs serum levels were associated with the classification of malignant tumor (TNM) stage and grading. Low sMICA serum levels were associated with significantly longer progression-free (PFS) and overall survival (OS). In conclusion, we provide the first insights into sNKG2DLs in BC patients and suggest their potential role in tumor immune escape in breast cancer. Furthermore, our observations suggest that serum sMICA levels may serve as a prognostic parameter in the patients analyzed in this study.


Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Research Personnel , Enzyme-Linked Immunosorbent Assay , Health Status
3.
Int J Oncol ; 63(3)2023 Sep.
Article En | MEDLINE | ID: mdl-37503786

Although checkpoint inhibitors (CPI) have recently extended the treatment options and improved clinical response of advanced stage head and neck squamous cell carcinoma (HNSCC), treatment success remains unpredictable. Programmed cell death ligand­1 (PD­L1) is a key player in immunotherapy. Tumor cells, and exosomes derived therefrom, are carriers of PD­L1 and efficiently suppress immune responses. The aim of the present study was to analyze the influence of established therapies on PD­L1 expression of HNSCC cell lines and their exosomes. The HNSCC cell lines, UM­SCC­11B, UM­SCC­14C and UM­SCC­22C were treated with fractionated radiotherapy (RT; 5x2 Gy), cisplatin (CT) and cetuximab (Cetux) as monotherapy, or combined therapy, chemoradiotherapy (CRT; RT and CT) or radioimmunotherapy (RT and Cetux). The expression of PD­L1 and phosphorylated (p)ERK1/2 as a mediator of radioresistance were assessed using western blotting, immunohistochemistry and an ex vivo vital tissue culture model. Additionally, exosomes were isolated from concentrated supernatants of the (un­)treated HNSCC cell lines by size exclusion chromatography. Exosomal protein expression levels of PD­L1 were detected using western blotting and semi­quantitative levels were calculated. The functional impact of exosomes from the (un­)treated HNSCC cell lines on the proliferation (MTS assay) and apoptosis (Caspase 3/7 assay) of the untreated HNSCC cell lines were measured and compared. The HNSCC cell lines UM­SCC­11B and UM­SCC­22B showed strong expression of pERK1/2 and PD­L1, respectively. RT upregulated the PD­L1 expression in UM­SCC­11B and UM­SCC­14C and in exosomes from all three cell lines. CT alone induced PD­L1 expression in all cell lines. CRT induced the expression of PD­L1 in all HNSCC cell lines and exosomes from UM­SCC­14C and UM­SCC­22B. The data indicated a potential co­regulation of PD­L1 and activated ERK1/2, most evident in UM­SCC­14C. Exosomes from irradiated UM­SCC­14C cells protected the unirradiated cells from apoptosis by Caspase 3/7 downregulation. The present study suggested a tumor cell­mediated regulation of PD­L1 upon platinum­based CRT in HNSCC and in exosomes. A co­regulation of PD­L1 and MAPK signaling response was hypothesized.


Exosomes , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Caspase 3/metabolism , Exosomes/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Cetuximab/pharmacology , Cisplatin/pharmacology , Cell Line, Tumor
...