Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(4): 2285-95, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19043046

RESUMEN

Archaeal methane formation from methylamines is initiated by distinct methyltransferases with specificity for monomethylamine, dimethylamine, or trimethylamine. Each methylamine methyltransferase methylates a cognate corrinoid protein, which is subsequently demethylated by a second methyltransferase to form methyl-coenzyme M, the direct methane precursor. Methylation of the corrinoid protein requires reduction of the central cobalt to the highly reducing and nucleophilic Co(I) state. RamA, a 60-kDa monomeric iron-sulfur protein, was isolated from Methanosarcina barkeri and is required for in vitro ATP-dependent reductive activation of methylamine:CoM methyl transfer from all three methylamines. In the absence of the methyltransferases, highly purified RamA was shown to mediate the ATP-dependent reductive activation of Co(II) corrinoid to the Co(I) state for the monomethylamine corrinoid protein, MtmC. The ramA gene is located near a cluster of genes required for monomethylamine methyltransferase activity, including MtbA, the methylamine-specific CoM methylase and the pyl operon required for co-translational insertion of pyrrolysine into the active site of methylamine methyltransferases. RamA possesses a C-terminal ferredoxin-like domain capable of binding two tetranuclear iron-sulfur proteins. Mutliple ramA homologs were identified in genomes of methanogenic Archaea, often encoded near methyltrophic methyltransferase genes. RamA homologs are also encoded in a diverse selection of bacterial genomes, often located near genes for corrinoid-dependent methyltransferases. These results suggest that RamA mediates reductive activation of corrinoid proteins and that it is the first functional archetype of COG3894, a family of redox proteins of unknown function.


Asunto(s)
Proteínas Arqueales/metabolismo , Corrinoides/metabolismo , Methanosarcina barkeri/metabolismo , Metiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Activación Enzimática , Ferredoxinas/genética , Ferredoxinas/metabolismo , Genoma Arqueal/genética , Metilación , Factores de Tiempo
2.
Mol Microbiol ; 64(5): 1306-18, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17542922

RESUMEN

Methanosarcina spp. begin methanogenesis from methylamines with methyltransferases made via the translation of UAG as pyrrolysine. In vitro evidence indicates two possible routes to pyrrolysyl-tRNA(Pyl). PylS ligates pyrrolysine to tRNA(Pyl). Alternatively, class I and class II lysyl-tRNA synthetases (LysRS1 and LysRS2) together form lysyl-tRNA(Pyl), a potential intermediate to pyrrolysyl-tRNA(Pyl). The unusual possession of both LysRS1 and LysRS2 by Methanosarcina spp. may also reflect differences in catalytic properties. Here we assessed the in vivo relevance of these hypotheses. The lysK and mtmB transcripts, encoding LysRS1 and monomethylamine methyltransferase, were detectable in Methanosarcina barkeri during early log growth on trimethylamine, but not methanol. In contrast, lysS transcript encoding LysRS2 was detectable during log phase with either substrate. Methanosarcina acetivorans strains bearing deletions of lysK or lysS grew normally on methanol and methylamines with wild-type levels of monomethylamine methyltransferase and aminoacyl-tRNA(Pyl). The lysK and lysS genes could not replace pylS in a recombinant system employing tRNA(Pyl) for UAG suppression. The results support an association of LysRS1 with growth on methylamine, but not an essential role for LysRS1/LysRS2 in the genetic encoding of pyrrolysine. However, decreased lysyl-tRNA(Lys) in the lysS mutant provides a possible rationale for stable transfer of the bacterial lysS gene to methanoarchaea.


Asunto(s)
Lisina-ARNt Ligasa/clasificación , Lisina-ARNt Ligasa/genética , Lisina/análogos & derivados , Methanosarcina/enzimología , Mutación , Crecimiento Quimioautotrófico , Lisina/genética , Lisina/metabolismo , Lisina-ARNt Ligasa/metabolismo , Methanosarcina/genética
3.
Nat Biotechnol ; 22(5): 547-53, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15064768

RESUMEN

Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.


Asunto(s)
Genoma Bacteriano , Thermus thermophilus/genética , Datos de Secuencia Molecular , Plásmidos
4.
J Mol Microbiol Biotechnol ; 4(4): 453-61, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12125824

RESUMEN

The Archaeon Methanosarcina mazei and related species are of great ecological importance as they are the only organisms fermenting acetate, methylamines and methanol to methane, carbon dioxide and ammonia (in case of methylamines). Since acetate is the precursor of 60% of the methane produced on earth these organisms contribute significantly to the production of this greenhouse gas, e.g. in rice paddies. The 4,096,345 base pairs circular chromosome of M. mazei is more than twice as large as the genomes of the methanogenic Archaea currently completely sequenced (Bult et al., 1996; Smith et al., 1997). 3,371 open reading frames (ORFs) were identified. Based on currently available sequence data 376 of these ORFs are Methanosarcina-specific and 1,043 ORFs find their closest homologue in the bacterial domain. 544 of these ORFs reach significant similarity values only in the bacterial domain. They include 56 of the 102 transposases, and proteins involved in gluconeogenesis, proline biosynthesis, transport processes, DNA-repair, environmental sensing, gene regulation, and stress response. Striking examples are the occurrence of the bacterial GroEL/GroES chaperone system and the presence of tetrahydrofolate-dependent enzymes. These findings might indicate that lateral gene transfer has played an important evolutionary role in forging the physiology of this metabolically versatile methanogen.


Asunto(s)
Archaea/genética , Bacterias/genética , Genoma Arqueal , Methanosarcina/genética , Bacterias/clasificación , Técnicas de Transferencia de Gen , Methanosarcina/clasificación , Methanosarcina/metabolismo , Sistemas de Lectura Abierta , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA