Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 53(1): 53-63, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22449794

RESUMEN

Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT) has distinct anti-hypertrophic and inotropic functions. We have previously shown that PICOT exerts its anti-hypertrophic effect by inhibiting calcineurin-NFAT signaling through its C-terminal glutaredoxin domain. However, the mechanism underlying the inotropic effect of PICOT is unknown. The results of protein pull-down experiments showed that PICOT directly binds to the catalytic domain of PKCζ through its N-terminal thioredoxin-like domain. Purified PICOT protein inhibited the kinase activity of PKCζ in vitro, which indicated that PICOT is an endogenous inhibitor of PKCζ. The inhibition of PKCζ activity with a PKCζ-specific pseudosubstrate peptide inhibitor was sufficient to increase the cardiac contractility in vitro and ex vivo. Overexpression of PICOT or inhibition of PKCζ activity down-regulated PKCα activity, which led to the elevation of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a activity, concomitant with the increased phosphorylation of phospholamban (PLB). Overexpression of PICOT or inhibition of PKCζ activity also down-regulated protein phosphatase (PP) 2A activity, which subsequently resulted in the increased phosphorylation of troponin (Tn) I and T, key myofilament proteins associated with the regulation of contractility. PICOT appeared to inhibit PP2A activity through the disruption of the functional PKCζ/PP2A complex. In contrast to the overexpression of PICOT or inhibition of PKCζ, reduced PICOT expression resulted in up-regulation of PKCα and PP2A activities, followed by decreased phosphorylation of PLB, and TnI and T, respectively, supporting the physiological relevance of these events. Transgene- or adeno-associated virus (AAV)-mediated overexpression of PICOT restored the impaired contractility and prevented further morphological and functional deterioration of the failing hearts. Taken together, the results of the present study suggest that PICOT exerts its inotropic effect by negatively regulating PKCα and PP2A activities through the inhibition of PKCζ activity. This finding provides a novel insight into the regulation of cardiac contractility.


Asunto(s)
Proteínas Portadoras/metabolismo , Contracción Miocárdica/fisiología , Proteína Quinasa C/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Línea Celular , Activación Enzimática , Humanos , Masculino , Ratones , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Fragmentos de Péptidos/farmacología , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Troponina I/metabolismo , Troponina T/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología
2.
BMC Cell Biol ; 12: 7, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21272378

RESUMEN

BACKGROUND: Annexins are calcium dependent phospholipid binding proteins that are expressed in a wide variety of tissues and implicated in various extra- and intracellular processes. In myocardial tissue, annexins A2, A5 and A6 are particularly abundant, of which the expression levels of annexin A6 has been found to be maximal. Conflicting reports from transgenic mice overexpressing annexin A6 or null mice lacking annexin A6 showed imbalances in intracellular calcium turnover and disturbed cardiac contractility. However, few studies have focussed on the signalling module of annexin A6 in the heart either in normal or in pathological state. RESULTS: To identify the putative binding partners of annexin A6 in the heart, ventricular extracts were subjected to glutathione S-transferase (GST)- annexin A6 pull down assay and the GST- annexin A6 bound proteins were identified by mass spectrometry. The pull down fractions of ventricular extracts with GST-full length annexin A6 as well as GST-C terminus deleted annexin A6 when immunoblotted with anti sarcomeric alpha (α)-actinin antibody showed the presence of α-actinin in the immunoblot which was absent when GST-N terminus deleted annexin A6 was used for pull down. Overexpression of green fluorescent protein (GFP) tagged full length annexin A6 showed z-line like appearance in cardiomyocytes whereas GFP-N termimus deleted annexin A6 was mostly localized to the nucleus. Overexpression of GFP-C terminus deleted annexin A6 in cardiomyocytes showed aggregate like appearance in the cytoplasm. Double immunofluorescent staining of cardiomyocytes with anti annexin A6 and anti sarcomeric α-actinin antibodies showed perfect co-localization of these two proteins with annexin A6 appearing like a component of sarcomere. Transient knockdown of annexin A6 in cardiomyocytes by shRNA significantly enhances the contractile functions but does not affect the z-band architecture, as revealed by α-actinin immunostaining in shRNA treated cells. CONCLUSIONS: In overall, the present study demonstrated for the first time that annexin A6 physically interacts with sarcomeric α-actinin and alters contractility of cardiomyocytes suggesting that it might play important role in excitation and contraction process.


Asunto(s)
Actinina/metabolismo , Anexina A6/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Anexina A6/análisis , Anexina A6/genética , Anticuerpos/inmunología , Células Cultivadas , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Transducción de Señal
3.
Biochem J ; 434(1): 171-80, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21126233

RESUMEN

Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However, less is known about the details of RLC-MHC II interaction or the loss-of-function phenotypes of non-muscle RLCs in mammalian cells. In the present paper, we investigate three highly conserved non-muscle RLCs of the mouse: MYL (myosin light chain) 12A (referred to as MYL12A), MYL12B and MYL9 (MYL12A/12B/9). Proteomic analysis showed that all three are associated with the MHCs MYH9 (NMHC IIA) and MYH10 (NMHC IIB), as well as the ELC MYL6, in NIH 3T3 fibroblasts. We found that knockdown of MYL12A/12B in NIH 3T3 cells results in striking changes in cell morphology and dynamics. Remarkably, the levels of MYH9, MYH10 and MYL6 were reduced significantly in knockdown fibroblasts. Comprehensive interaction analysis disclosed that MYL12A, MYL12B and MYL9 can all interact with a variety of MHC IIs in diverse cell and tissue types, but do so optimally with non-muscle types of MHC II. Taken together, our study provides direct evidence that normal levels of non-muscle RLCs are essential for maintaining the integrity of myosin II, and indicates that the RLCs are critical for cell structure and dynamics.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Amidas/farmacología , Secuencia de Aminoácidos , Animales , Movimiento Celular , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Ratones , Datos de Secuencia Molecular , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Células 3T3 NIH , Piridinas/farmacología , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...