Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(34): e2202771, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316224

RESUMEN

Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Mensajero/genética , Anticuerpos Neutralizantes/uso terapéutico
2.
PLoS Pathog ; 16(10): e1008987, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33031461

RESUMEN

The ribonucleocapsid complex of respiratory syncytial virus (RSV) is responsible for both viral mRNA transcription and viral replication during infection, though little is known about how this dual function is achieved. Here, we report the use of a recombinant RSV virus with a FLAG-tagged large polymerase protein, L, to characterize and localize RSV ribonucleocapsid structures during the early and late stages of viral infection. Through proximity ligation assays and super-resolution microscopy, viral RNA and proteins in the ribonucleocapsid complex were revealed to dynamically rearrange over time, particularly between 6 and 8 hours post infection, suggesting a connection between the ribonucleocapsid structure and its function. The timing of ribonucleocapsid rearrangement corresponded with an increase in RSV genome RNA accumulation, indicating that this rearrangement is likely involved with the onset of RNA replication and secondary transcription. Additionally, early overexpression of RSV M2-2 from in vitro transcribed mRNA was shown to inhibit virus infection by rearranging the ribonucleocapsid complex. Collectively, these results detail a critical understanding into the localization and activity of RSV L and the ribonucleocapsid complex during RSV infection.


Asunto(s)
Proteínas de la Nucleocápside/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Células A549 , Animales , Chlorocebus aethiops , Humanos , Proteínas de la Nucleocápside/genética , ARN Viral/genética , ARN Viral/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Ribonucleoproteínas/genética , Transcripción Genética , Células Vero , Proteínas Virales/genética
3.
Nat Commun ; 9(1): 3999, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275522

RESUMEN

The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antivirales/administración & dosificación , Palivizumab/inmunología , ARN Mensajero/administración & dosificación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/metabolismo , Antivirales/inmunología , Línea Celular , Membrana Celular/metabolismo , Femenino , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Palivizumab/genética , Palivizumab/metabolismo , Profilaxis Pre-Exposición , ARN Mensajero/genética , ARN Mensajero/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Proteínas Virales de Fusión/inmunología
4.
Nat Commun ; 8(1): 667, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939853

RESUMEN

The human respiratory syncytial virus G protein plays an important role in the entry and assembly of filamentous virions. Here, we report the use of fluorescently labeled soybean agglutinin to selectively label the respiratory syncytial virus G protein in living cells without disrupting respiratory syncytial virus infectivity or filament formation and allowing for interrogations of respiratory syncytial virus virion assembly. Using this approach, we discovered that plasma membrane-bound respiratory syncytial virus G rapidly recycles from the membrane via clathrin-mediated endocytosis. This event is then followed by the dynamic formation of filamentous and branched respiratory syncytial virus particles, and assembly with genomic ribonucleoproteins and caveolae-associated vesicles prior to re-insertion into the plasma membrane. We demonstrate that these processes are halted by the disruption of microtubules and inhibition of molecular motors. Collectively, our results show that for respiratory syncytial virus assembly, viral filaments are produced and loaded with genomic RNA prior to insertion into the plasma membrane.Assembly of filamentous RSV particles is incompletely understood due to a lack of techniques suitable for live-cell imaging. Here Vanover et al. use labeled soybean agglutinin to selectively label RSV G protein and show how filamentous RSV assembly, initiated in the cytoplasm, uses G protein recycled from the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , ARN Viral/metabolismo , Virus Sincitial Respiratorio Humano/genética , Proteínas Virales de Fusión/metabolismo , Animales , Caveolinas/metabolismo , Chlorocebus aethiops , Clatrina/metabolismo , Endocitosis/fisiología , Humanos , Microtúbulos/metabolismo , Imagen Molecular/métodos , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Virus Sincitial Respiratorio Humano/fisiología , Ribonucleoproteínas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Células Vero , Replicación Viral
5.
J Virol ; 88(13): 7602-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760890

RESUMEN

UNLABELLED: Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family of nonsegmented, negative-sense, single-stranded RNA genome viruses, is a leading cause of lower respiratory tract infections in infants, young children, and the elderly or immunocompromised. There are many open questions regarding the processes that regulate human RSV (hRSV) assembly and budding. Here, using cryo-electron tomography, we identified virus particles that were spherical, filamentous, and asymmetric in structure, all within the same virus preparation. The three particle morphologies maintained a similar organization of the surface glycoproteins, matrix protein (M), M2-1, and the ribonucleoprotein (RNP). RNP filaments were traced in three dimensions (3D), and their total length was calculated. The measurements revealed the inclusion of multiple full-length genome copies per particle. RNP was associated with the membrane whenever the M layer was present. The amount of M coverage ranged from 24% to 86% in the different morphologies. Using fluorescence light microscopy (fLM), direct stochastic optical reconstruction microscopy (dSTORM), and a proximity ligation assay (PLA), we provide evidence illustrating that M2-1 is located between RNP and M in isolated viral particles. In addition, regular spacing of the M2-1 densities was resolved when hRSV viruses were imaged using Zernike phase contrast (ZPC) cryo-electron tomography. Our studies provide a more complete characterization of the hRSV virion structure and substantiation that M and M2-1 regulate virus organization. IMPORTANCE: hRSV is a leading cause of lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. We used cryo-electron tomography and Zernike phase contrast cryo-electron tomography to visualize populations of purified hRSV in 3D. We observed the three distinct morphologies, spherical, filamentous, and asymmetric, which maintained comparable organizational profiles. Depending on the virus morphology examined, the amount of M ranged from 24% to 86%. We complemented the cryo-imaging studies with fluorescence microscopy, dSTORM, and a proximity ligation assay to provide additional evidence that M2-1 is incorporated into viral particles and is positioned between M and RNP. The results highlight the impact of M and M2-1 on the regulation of hRSV organization.


Asunto(s)
ARN Viral/química , Virus Sincitial Respiratorio Humano/ultraestructura , Ribonucleoproteínas/química , Proteínas de la Matriz Viral/química , Microscopía por Crioelectrón/métodos , Humanos , ARN Viral/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Ribonucleoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo
6.
ACS Nano ; 8(1): 302-15, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24351207

RESUMEN

The creation of fluorescently labeled viruses is currently limited by the length of imaging observation time (e.g., labeling an envelope protein) and the rescue of viral infectivity (e.g., encoding a GFP protein). Using single molecule sensitive RNA hybridization probes delivered to the cytoplasm of infected cells, we were able to isolate individual, infectious, fluorescently labeled human respiratory syncytial virus virions. This was achieved without affecting viral mRNA expression, viral protein expression, or infectivity. Measurements included the characterization of viral proteins and genomic RNA in a single virion using dSTORM, the development of a GFP fusion assay, and the development of a pulse-chase assay for viral RNA production that allowed for the detection of both initial viral RNA and nascent RNA production at designated times postinfection. Live-cell measurements included imaging and characterization of filamentous virion fusion and the quantification of virus replication within the same cell over an eight-hour period. Using probe-labeled viruses, individual viral particles can be characterized at subdiffraction-limited resolution, and viral infections can be quantified in single cells over an entire cycle of replication. The implication of this development is that MTRIP labeling of viral RNA during virus assembly has the potential to become a general methodology for the labeling and study of many important RNA viruses.


Asunto(s)
Sondas ARN , Virus Sincitiales Respiratorios/fisiología , Línea Celular , Proteínas Fluorescentes Verdes/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Sincitiales Respiratorios/genética , Ensamble de Virus
7.
PLoS One ; 8(9): e74598, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040294

RESUMEN

Many studies have demonstrated an association between the cytoskeleton and mRNA, as well as the asymmetric distribution of mRNA granules within the cell in response to various signaling events. It is likely that the extensive cytoskeletal network directs mRNA transport and localization, with different cytoskeletal elements having their own specific roles. In order to understand the spatiotemporal changes in the interactions between the mRNA and the cytoskeleton as a response to a stimulus, a technique that can visualize and quantify these changes across a population of cells while capturing cell-to-cell variations is required. Here, we demonstrate a method for imaging and quantifying mRNA-cytoskeleton interactions on a per cell basis with single-interaction sensitivity. Using a proximity ligation assay with flag-tagged multiply-labeled tetravalent RNA imaging probes (FMTRIP), we quantified interactions between mRNAs and ß-tubulin, vimentin, or filamentous actin (F-actin) for two different mRNAs, poly(A) + and ß-actin mRNA, in two different cell types, A549 cells and human dermal fibroblasts (HDF). We found that the mRNAs interacted predominantly with F-actin (>50% in HDF, >20% in A549 cells), compared to ß-tubulin (<5%) and vimentin (11-13%). This likely reflects differences in mRNA management by the two cell types. We then quantified changes in these interactions in response to two perturbations, F-actin depolymerization and arsenite-induced oxidative stress, both of which alter either the cytoskeleton itself and mRNA localization. Both perturbations led to a decrease in poly(A) + mRNA interactions with F-actin and an increase in the interactions with microtubules, in a time dependent manner.


Asunto(s)
Citoesqueleto/metabolismo , Microscopía Confocal/métodos , ARN Mensajero/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Fibroblastos/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Microtúbulos/metabolismo , Estrés Oxidativo , Poli A/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
8.
Nucleic Acids Res ; 41(1): e12, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22952158

RESUMEN

The stabilization, translation and degradation of RNA are regulated by interactions between trans-acting factors, such as microRNA and RNA-binding proteins (RBP). In order to investigate the relationships between these events and their significance, a method that detects the localization of these interactions within a single cell, as well as their variability across a cell population, is needed. To visualize and quantify RNA-protein interactions in situ, we developed a proximity ligation assay (PLA) that combined peptide-modified, multiply-labelled tetravalent RNA imaging probes (MTRIPs), targeted to sequences near RBP binding sites, with proximity ligation and rolling circle amplification (RCA). Using this method, we detected and quantified, with single-interaction sensitivity, the localization and frequency of interactions of the human respiratory syncytial virus (hRSV) nucleocapsid protein (N) with viral genomic RNA (gRNA). We also described the effects of actinomycin D (actD) on the interactions of HuR with ß-actin mRNA and with poly(A)+ mRNA at both native and increased HuR expression levels.


Asunto(s)
Imagen Molecular/métodos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Línea Celular , Dactinomicina/farmacología , Proteínas ELAV/metabolismo , Humanos , Microscopía Fluorescente , Sondas Moleculares/química , Proteínas de la Nucleocápside/metabolismo , Oligopéptidos , Péptidos/química , ARN Mensajero/metabolismo , ARN Viral/metabolismo
9.
J Virol ; 86(15): 8245-58, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623778

RESUMEN

Currently, the spatial distribution of human respiratory syncytial virus (hRSV) proteins and RNAs in infected cells is still under investigation, with many unanswered questions regarding the interaction of virus-induced structures and the innate immune system. Very few studies of hRSV have used subcellular imaging as a means to explore the changes in localization of retinoic-acid-inducible gene-I (RIG-I)-like receptors or the mitochondrial antiviral signaling (MAVS) protein, in response to the infection and formation of viral structures. In this investigation, we found that both RIG-I and melanoma differentiation-associated gene 5 (MDA5) colocalized with viral genomic RNA and the nucleoprotein (N) as early as 6 h postinfection (hpi). By 12 hpi, MDA5 and MAVS were observed within large viral inclusion bodies (IB). We used a proximity ligation assay (PLA) and determined that the N protein was in close proximity to MDA5 and MAVS in IBs throughout the course of the infection. Similar results were found with the transient coexpression of N and the phosphoprotein (P). Additionally, we demonstrated that the localization of MDA5 and MAVS in IBs inhibited the expression of interferon ß mRNA 27-fold following Newcastle disease virus infection. From these data, we concluded that the N likely interacts with MDA5, is in close proximity to MAVS, and localizes these molecules within IBs in order to attenuate the interferon response. To our knowledge, this is the first report of a specific function for hRSV IBs and of the hRSV N protein as a modulator of the innate immune response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , ARN Helicasas DEAD-box/inmunología , Inmunidad Innata , Cuerpos de Inclusión Intranucleares/inmunología , Nucleoproteínas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aves , Línea Celular Tumoral , Chlorocebus aethiops , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Genoma Viral/genética , Genoma Viral/inmunología , Humanos , Helicasa Inducida por Interferón IFIH1 , Interferón beta/biosíntesis , Interferón beta/genética , Interferón beta/inmunología , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Cuerpos de Inclusión Intranucleares/virología , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/metabolismo , Enfermedad de Newcastle/patología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , Receptores Inmunológicos , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
mBio ; 3(1)2012.
Artículo en Inglés | MEDLINE | ID: mdl-22318318

RESUMEN

UNLABELLED: Respiratory syncytial virus (RSV) is a single-stranded RNA virus in the Paramyxoviridae family that assembles into filamentous structures at the apical surface of polarized epithelial cells. These filaments contain viral genomic RNA and structural proteins, including the fusion (F) protein, matrix (M) protein, nucleoprotein (N), and phosphoprotein (P), while excluding F-actin. It is known that the F protein cytoplasmic tail (FCT) is necessary for filament formation, but the mechanism by which the FCT mediates assembly into filaments is not clear. We hypothesized that the FCT is necessary for interactions with other viral proteins in order to form filaments. In order to test this idea, we expressed the F protein with cytoplasmic tail (CT) truncations or specific point mutations and determined the abilities of these variant F proteins to form filaments independent of viral infection when coexpressed with M, N, and P. Deletion of the terminal three FCT residues (amino acids Phe-Ser-Asn) or mutation of the Phe residue resulted in a loss of filament formation but did not affect F-protein expression or trafficking to the cell surface. Filament formation could be restored by addition of residues Phe-Ser-Asn to an FCT deletion mutant and was unaffected by mutations to Ser or Asn residues. Second, deletion of residues Phe-Ser-Asn or mutation of the Phe residue resulted in a loss of M, N, and P incorporation into virus-like particles. These data suggest that a C-terminal Phe residue in the FCT mediates assembly through incorporation of internal virion proteins into virus filaments at the cell surface. IMPORTANCE: Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in infants and the elderly worldwide. There is no licensed RSV vaccine and only limited therapeutics for use in infected patients. Many aspects of the RSV life cycle have been studied, but the mechanisms that drive RSV assembly at the cell surface are not well understood. This study provides evidence that a specific residue in the RSV fusion protein cytoplasmic tail coordinates assembly into viral filaments by mediating the incorporation of internal virion proteins. Understanding the mechanisms that drive RSV assembly could lead to targeted development of novel antiviral drugs. Moreover, since RSV exits infected cells in an ESCRT (endosomal sorting complexes required for transport)-independent manner, these studies may contribute new knowledge about a general strategy by which ESCRT-independent viruses mediate outward bud formation using viral protein-mediated mechanisms during assembly and budding.


Asunto(s)
Fenilalanina , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Virales de Fusión/genética , Ensamble de Virus , Secuencia de Aminoácidos , Línea Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/ultraestructura , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/ultraestructura , Alineación de Secuencia , Proteínas Virales de Fusión/metabolismo
11.
Methods Enzymol ; 505: 383-99, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22289464

RESUMEN

RNA localization, dynamics, and regulation are becoming increasingly important to our basic understanding of gene expression and RNA virus pathogenesis. An improved understanding of these processes will be necessary in order to identify new drug targets, as well as to create models of gene expression networks. Much of this new understanding will likely come from imaging studies of RNA, which can generate the spatiotemporal information necessary to characterize RNA within the cellular milieu. Ideally, this would be performed imaging native, nonengineered RNAs, but the approaches for performing these experiments are still evolving. In order for them to reach their potential, it is critical that they have characteristics that allow for the tracking of RNA throughout their life cycle. This chapter presents an overview of RNA imaging methodologies, and focuses on a single RNA sensitive method, employing exogenous probes, for imaging, native, nonengineered RNA in live cells.


Asunto(s)
Rastreo Celular/métodos , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , ARN Mensajero/metabolismo , Imagen de Lapso de Tiempo/métodos , Actinas/metabolismo , Animales , Expresión Génica , Proteínas Fluorescentes Verdes , Ligandos , Ratones , Nanopartículas/química , Proteínas de Unión al ARN/análisis , Coloración y Etiquetado
12.
PLoS One ; 6(5): e19727, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21573130

RESUMEN

When cells experience environmental stresses, global translational arrest is often accompanied by the formation of stress granules (SG) and an increase in the number of p-bodies (PBs), which are thought to play a crucial role in the regulation of eukaryotic gene expression through the control of mRNA translation and degradation. SGs and PBs have been extensively studied from the perspective of their protein content and dynamics but, to date, there have not been systematic studies on how they interact with native mRNA granules. Here, we demonstrate the use of live-cell hybridization assays with multiply-labeled tetravalent RNA imaging probes (MTRIPs) combined with immunofluorescence, as a tool to characterize the polyA+ and ß-actin mRNA distributions within the cytoplasm of epithelial cell lines, and the changes in their colocalization with native RNA granules including SGs, PBs and the RNA exosome during the inhibition of translational initiation. Translation initiation inhibition was achieved via the induction of oxidative stress using sodium arsenite, as well as through the use of Pateamine A, puromycin and cycloheximide. This methodology represents a valuable tool for future studies of mRNA trafficking and regulation within living cells.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Actinas/genética , Actinas/metabolismo , Arsenitos/farmacología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Cicloheximida/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Compuestos Epoxi/farmacología , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Humanos , Macrólidos/farmacología , Centro Organizador de los Microtúbulos/efectos de los fármacos , Centro Organizador de los Microtúbulos/metabolismo , Sondas Moleculares/metabolismo , Nocodazol/farmacología , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Poli A/metabolismo , Puromicina/farmacología , Transporte de ARN/efectos de los fármacos , ARN Mensajero/genética , Compuestos de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Tiazoles/farmacología
13.
Traffic ; 12(8): 1000-11, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21518164

RESUMEN

Transport of messenger RNAs (mRNAs) in the cytoplasm is essential for localization to translation sites and for post-transcriptional regulation. Utilizing single-RNA sensitive probes and real-time fluorescence microscopy, we accurately quantified the dynamics of native, non-engineered, ß-actin mRNAs within the cytoplasm of epithelial cells and fibroblasts for the first time. Using single-particle tracking and temporal analysis, we determined that native ß-actin mRNAs, under physiologic conditions, exhibit bursts of intermittent, processive motion on microtubules, interspersed between time periods of diffusive motion, characterized by non-thermal enhanced diffusivity. When transport processes were perturbed via ATP depletion, temperature reduction, dynamitin overexpression and chemical inhibitors, processive motion was diminished or eliminated and diffusivity was reduced. These data support a model whereby processive, motor-driven motion is responsible for long-distance mRNA transport.


Asunto(s)
Actinas/metabolismo , Citoplasma/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , Actinas/genética , Adenosina Trifosfato/metabolismo , Complejo Dinactina , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte de ARN , ARN Mensajero/genética , Temperatura , Células Tumorales Cultivadas
14.
J Virol ; 84(23): 12274-84, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20844027

RESUMEN

Mammalian cell cytoplasmic RNA stress granules are induced during various conditions of stress and are strongly associated with regulation of host mRNA translation. Several viruses induce stress granules during the course of infection, but the exact function of these structures during virus replication is not well understood. In this study, we showed that respiratory syncytial virus (RSV) induced host stress granules in epithelial cells during the course of infection. We also showed that stress granules are distinct from cytoplasmic viral inclusion bodies and that the RNA binding protein HuR, normally found in stress granules, also localized to viral inclusion bodies during infection. Interestingly, we demonstrated that infected cells containing stress granules also contained more RSV protein than infected cells that did not form inclusion bodies. To address the role of stress granule formation in RSV infection, we generated a stable epithelial cell line with reduced expression of the Ras-GAP SH3 domain-binding protein (G3BP) that displayed an inhibited stress granule response. Surprisingly, RSV replication was impaired in these cells compared to its replication in cells with intact G3BP expression. In contrast, knockdown of HuR by RNA interference did not affect stress granule formation or RSV replication. Finally, using RNA probes specific for RSV genomic RNA, we found that viral RNA predominantly localized to viral inclusion bodies but a small percentage also interacted with stress granules during infection. These results suggest that RSV induces a host stress granule response and preferentially replicates in host cells that have committed to a stress response.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios/fisiología , Estrés Fisiológico/fisiología , Replicación Viral/fisiología , Antígenos de Superficie/metabolismo , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , ADN Helicasas , Proteínas ELAV , Proteína 1 Similar a ELAV , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Interferencia de ARN , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Bioconjug Chem ; 21(3): 483-8, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20141184

RESUMEN

The imaging of RNA in live cells presents a methodological challenge both in the mechanism by which the probes are delivered to the cell and in the sensitivity of the probe. Probes must be delivered to the correct cellular compartment and, once inside the cell, should bind to the target RNA rapidly and with enough sensitivity to detect small numbers of RNA molecules. Here, we report the characterization of a single-molecule sensitive, multivalent RNA imaging probe that utilizes an eight-armed poly(ethylene glycol) core. This probe allowed for the accurate imaging of the human respiratory syncytial virus (hRSV) genomic RNA when delivered into live cells using either reversible membrane permeabilization or TAT-peptide mediated membrane transduction. Neither reversible membrane permeabilization nor TAT mediated delivery proceeded through the endosomal pathway, and both delivery methods demonstrated fast binding kinetics of less than 10 min. Subcellular distributions of RNA were visualized in live cells, as well as RNA-protein colocalization, after fixation and immunostaining of the hRSV RNA binding protein N.


Asunto(s)
Técnicas de Transferencia de Gen , Polietilenglicoles/química , Sondas ARN/química , ARN Viral/química , Línea Celular Tumoral , Humanos , ARN Viral/genética , Virus Sincitiales Respiratorios/genética
16.
Nat Methods ; 6(5): 347-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19349979
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...