Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Science ; 369(6505): 812-817, 2020 08 14.
Article En | MEDLINE | ID: mdl-32434946

An understanding of protective immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for vaccine and public health strategies aimed at ending the global coronavirus disease 2019 (COVID-19) pandemic. A key unanswered question is whether infection with SARS-CoV-2 results in protective immunity against reexposure. We developed a rhesus macaque model of SARS-CoV-2 infection and observed that macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. After the initial viral clearance, animals were rechallenged with SARS-CoV-2 and showed 5 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa compared with after the primary infection. Anamnestic immune responses after rechallenge suggested that protection was mediated by immunologic control. These data show that SARS-CoV-2 infection induced protective immunity against reexposure in nonhuman primates.


Betacoronavirus , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/physiology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Female , Immunity, Cellular , Immunity, Humoral , Immunologic Memory , Lung/immunology , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/virology , Macaca mulatta , Male , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Recurrence , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Replication
2.
J Virol ; 89(12): 6462-80, 2015 Jun.
Article En | MEDLINE | ID: mdl-25855741

UNLABELLED: An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.


HIV-1/immunology , SAIDS Vaccines/immunology , Vaccination/methods , Vaccines, DNA/immunology , Animals , Antibodies, Neutralizing/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Aspartate Aminotransferases , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Consensus Sequence , Enzyme-Linked Immunospot Assay , HIV Antibodies/blood , HIV-1/genetics , Humans , Interferon-gamma/metabolism , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
3.
Clin Vaccine Immunol ; 21(10): 1385-95, 2014 Oct.
Article En | MEDLINE | ID: mdl-25080550

Live attenuated nonpathogenic Mycobacterium bovis bacillus Calmette-Guérin (BCG) mediates long-lasting immune responses, has been safely administered as a tuberculosis vaccine to billions of humans, and is affordable to produce as a vaccine vector. These characteristics make it very attractive as a human immunodeficiency virus (HIV) vaccine vector candidate. Here, we assessed the immunogenicity of recombinant BCG (rBCG) constructs with different simian immunodeficiency virus (SIV)gag expression cassettes as priming agents followed by a recombinant replication-incompetent New York vaccinia virus (NYVAC) boost in rhesus macaques. Unmutated rBCG constructs were used in comparison to mutants with gene deletions identified in an in vitro screen for augmented immunogenicity. We demonstrated that BCG-SIVgag is able to elicit robust transgene-specific priming responses, resulting in strong SIV epitope-specific cellular immune responses. While enhanced immunogenicity was sustained at moderate levels for >1 year following the heterologous boost vaccination, we were unable to demonstrate a protective effect after repeated rectal mucosal challenges with pathogenic SIVmac251. Our findings highlight the potential for rBCG vaccines to stimulate effective cross-priming and enhanced major histocompatibility complex class I presentation, suggesting that combining this approach with other immunogens may contribute to the development of effective vaccine regimens against HIV.


Drug Carriers , Genetic Vectors , Mycobacterium bovis/genetics , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Animals , Gene Products, gag/genetics , Gene Products, gag/immunology , Immunity, Cellular , Macaca mulatta , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/genetics , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
4.
J Virol ; 87(24): 13589-97, 2013 Dec.
Article En | MEDLINE | ID: mdl-24109227

Effective strategies are needed to block mucosal transmission of human immunodeficiency virus type 1 (HIV-1). Here, we address a crucial question in HIV-1 pathogenesis: whether infected donor mononuclear cells or cell-free virus plays the more important role in initiating mucosal infection by HIV-1. This distinction is critical, as effective strategies for blocking cell-free and cell-associated virus transmission may be different. We describe a novel ex vivo model system that utilizes sealed human colonic mucosa explants and demonstrate in both the ex vivo model and in vivo using the rectal challenge model in rhesus monkeys that HIV-1-infected lymphocytes can transmit infection across the mucosa more efficiently than cell-free virus. These findings may have significant implications for our understanding of the pathogenesis of mucosal transmission of HIV-1 and for the development of strategies to prevent HIV-1 transmission.


HIV Infections/virology , HIV-1/physiology , Intestinal Mucosa/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Colon/virology , HIV-1/genetics , Humans , In Vitro Techniques , Macaca mulatta , Simian Immunodeficiency Virus/genetics
5.
J Virol ; 84(24): 12782-9, 2010 Dec.
Article En | MEDLINE | ID: mdl-20881040

It has been suggested that vaccination prior to infection may direct the mutational evolution of human immunodeficiency virus type 1 (HIV-1) to a less fit virus, resulting in an attenuated course of disease. The present study was initiated to explore whether prior immunization might prevent the reversion of the virus to the wild-type form. Mamu-A*01 monkeys were vaccinated to generate a cytotoxic T-lymphocyte response to the immunodominant Gag p11C epitope and were then challenged with a cloned pathogenic CXCR4-tropic simian-human immunodeficiency virus (SHIV) expressing a mutant Gag p11C sequence (Δp11C SHIV). The epitopic and extraepitopic compensatory mutations introduced into gag of Δp11C SHIV resulted in attenuated replicative capacity and eventual reversions to the wild-type Gag p11C sequence in naïve rhesus monkeys. However, in vaccinated rhesus monkeys, no reversions of the challenge virus were observed, an effect that may have been a consequence of significantly decreased viral replication rather than a redirection of the mutational evolution of the virus. These findings highlight the multifactorial pressures that affect the evolution of primate immunodeficiency viruses.


SAIDS Vaccines/therapeutic use , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/physiology , Virus Replication/genetics , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , Gene Products, gag/genetics , Histocompatibility Antigens Class I/immunology , Humans , Macaca mulatta , Molecular Sequence Data , Point Mutation , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/genetics , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , Vaccination , Viral Load
6.
J Virol ; 83(19): 10028-35, 2009 Oct.
Article En | MEDLINE | ID: mdl-19641002

Emerging data suggest that a cytotoxic T-lymphocyte response against a diversity of epitopes confers greater protection against a human immunodeficiency virus/simian immunodeficiency virus infection than does a more focused response. To facilitate the creation of vaccine strategies that will generate cellular immune responses with the greatest breadth, it will be important to understand the mechanisms employed by the immune response to regulate the relative magnitudes of dominant and nondominant epitope-specific cellular immune responses. In this study, we generated dominant Gag p11C- and subdominant Env p41A-specific CD8(+) T-lymphocyte responses in Mamu-A*01(+) rhesus monkeys through vaccination with plasmid DNA and recombinant adenovirus encoding simian-human immunodeficiency virus (SHIV) proteins. Infection of vaccinated Mamu-A*01(+) rhesus monkeys with a SHIV Gag Deltap11C mutant virus generated a significantly increased expansion of the Env p41A-specific CD8(+) T-lymphocyte response in the absence of secondary Gag p11C-specific CD8(+) T-lymphocyte responses. These results indicate that the presence of the Gag p11C-specific CD8(+) T-lymphocyte response following virus challenge may exert suppressive effects on primed Env p41A-specific CD8(+) T-lymphocyte responses. These findings suggest that immunodomination exerted by dominant responses during SHIV infection may diminish the breadth of recall responses primed during vaccination.


CD8-Positive T-Lymphocytes/virology , Gene Products, gag/genetics , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Alleles , Animals , CD8-Positive T-Lymphocytes/metabolism , Dose-Response Relationship, Drug , Epitopes/chemistry , Flow Cytometry/methods , Gene Products, gag/chemistry , Macaca mulatta , Mutation , Peptides/chemistry , Point Mutation , Receptors, Antigen, T-Cell, alpha-beta/metabolism , SAIDS Vaccines/genetics , Simian Immunodeficiency Virus/genetics , Viral Load
7.
Nat Med ; 15(8): 873-5, 2009 Aug.
Article En | MEDLINE | ID: mdl-19620961

The immunologic basis for the potential enhanced HIV-1 acquisition in adenovirus serotype 5 (Ad5)-seropositive individuals who received the Merck recombinant Ad5 HIV-1 vaccine in the STEP study remains unclear. Here we show that baseline Ad5-specific neutralizing antibodies are not correlated with Ad5-specific T lymphocyte responses and that Ad5-seropositive subjects do not develop higher vector-specific cellular immune responses as compared with Ad5-seronegative subjects after vaccination. These findings challenge the hypothesis that activated Ad5-specific T lymphocytes were the cause of the potential enhanced HIV-1 susceptibility in the STEP study.


AIDS Vaccines/immunology , AIDS Vaccines/therapeutic use , Acquired Immunodeficiency Syndrome/therapy , Adenoviridae/immunology , HIV-1/immunology , Acquired Immunodeficiency Syndrome/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibody Specificity/immunology , Humans , Immunization , Interferon-gamma/metabolism , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use
8.
AIDS Res Hum Retroviruses ; 22(5): 445-52, 2006 May.
Article En | MEDLINE | ID: mdl-16706622

Because of the importance of developing HIV vaccine strategies that generate cytotoxic T lymphocyte (CTL) responses with a maximal breadth of epitope recognition, we have explored a variety of novel strategies designed to overcome the usual propensity of CTLs to focus recognition on a limited number of dominant epitopes. In studies of rhesus monkeys expressing the Mamu-A*01 MHC class I allele, we show that variously configured multiepitope plasmid DNA vaccine constructs elicit CTL populations that do not evidence skewing of recognition to dominant epitopes. Nevertheless, repeated boosting of these vaccinated monkeys with different live recombinant vaccine vectors uncovers and amplifies the usual CTL epitope dominance hierarchy. Importantly, in vitro peptide stimulation of peripheral blood mononuclear cells from monkeys that have received only a multiepitope plasmid DNA priming immunization uncovers this dominance hierarchy. Therefore, the dominance hierarchy of the vaccine-elicited epitope-specific CTL populations is inherent in the T lymphocytes of the monkeys after initial exposure to epitope peptides, and the ultimate breadth of epitope recognition cannot be modified thereafter. This finding underscores the enormous challenge associated with increasing the breadth of CTL recognition through vaccination.


Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Immunodominant Epitopes/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccines, DNA/immunology , Alleles , Animals , In Vitro Techniques , Macaca mulatta , Peptides/immunology , Plasmids/genetics
9.
Nature ; 441(7090): 239-43, 2006 May 11.
Article En | MEDLINE | ID: mdl-16625206

A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.


Adenoviridae/genetics , Adenoviridae/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Genetic Engineering , Genetic Vectors/genetics , Genetic Vectors/immunology , Adenoviridae/classification , Adenoviridae/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , DNA, Recombinant/genetics , Genetic Therapy , Macaca mulatta/immunology , Mice , Mice, Inbred C57BL , Neutralization Tests , Vaccines
10.
J Virol ; 80(4): 1645-52, 2006 Feb.
Article En | MEDLINE | ID: mdl-16439521

Because the vaccine vectors currently being evaluated in human populations all have significant limitations in their immunogenicity, novel vaccine strategies are needed for the elicitation of cell-mediated immunity. The nonpathogenic, rapidly growing mycobacterium Mycobacterium smegmatis was engineered as a vector expressing full-length human immunodeficiency virus type 1 (HIV-1) HXBc2 envelope protein. Immunization of mice with recombinant M. smegmatis led to the expansion of major histocompatibility complex class I-restricted HIV-1 epitope-specific CD8(+) T cells that were cytolytic and secreted gamma interferon. Effector and memory T lymphocytes were elicited, and repeated immunization generated a stable central memory pool of virus-specific cells. Importantly, preexisting immunity to Mycobacterium bovis BCG had only a marginal effect on the immunogenicity of recombinant M. smegmatis. This mycobacterium may therefore be a useful vaccine vector.


AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Genes, env , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Mycobacterium smegmatis/genetics , Animals , Bacterial Vaccines/immunology , Cytotoxicity Tests, Immunologic , Female , Immunization , Immunologic Memory , Interferon-gamma/biosynthesis , Mice , Mice, Inbred BALB C , Mycobacterium bovis , Mycobacterium smegmatis/immunology , Vaccines, Synthetic/immunology
11.
J Immunol ; 176(1): 319-28, 2006 Jan 01.
Article En | MEDLINE | ID: mdl-16365424

Because the control of HIV-1 replication is largely dependent on CD8+ T lymphocyte responses specific for immunodominant viral epitopes, vaccine strategies that increase the breadth of dominant epitope-specific responses should contribute to containing HIV-1 spread. Developing strategies to elicit such broad immune responses will require an understanding of the mechanisms responsible for focusing CD8+ T lymphocyte recognition on a limited number of epitopes. To explore this biology, we identified cohorts of rhesus monkeys that expressed the MHC class I molecules Mamu-A*01, Mamu-A*02, or both, and assessed the evolution of their dominant epitope-specific CD8+ T lymphocyte responses (Gag p11C- and Tat TL8-specific in the Mamu-A*01+ and Nef p199RY-specific in the Mamu-A*02+ monkeys) following acute SIV infection. The Mamu-A*02+ monkeys that also expressed Mamu-A*01 exhibited a significant delay in the evolution of the CD8+ T lymphocyte responses specific for the dominant Mamu-A*02-restricted SIV epitope, Nef p199RY. This delay in kinetics was not due to differences in viral load kinetics or magnitude or in viral escape mutations, but was associated with the evolution of the Mamu-A*01-restricted CD8+ T lymphocyte responses to the highly dominant SIV epitopes Gag p11C and Tat TL8. Thus, the evolution of dominant epitope-specific CD8+ T lymphocyte responses can be suppressed by other dominant epitope-specific responses, and this immunodomination is important in determining the kinetics of dominant epitope-specific responses.


Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Immunodominant Epitopes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Amino Acid Sequence , Animals , Epitopes, T-Lymphocyte/genetics , Immunodominant Epitopes/genetics , Macaca mulatta , Molecular Sequence Data , Mutation , Polymerase Chain Reaction , Simian Immunodeficiency Virus/immunology
12.
Immunology ; 116(4): 443-53, 2005 Dec.
Article En | MEDLINE | ID: mdl-16313358

The development of successful vaccination strategies for eliciting cytotoxic T lymphocytes (CTLs) will be facilitated by the definition of strategies for subdividing CTLs into functionally distinct subpopulations. We assessed whether surface expression of a number of cell-surface proteins could be used to define functionally distinct subpopulations of memory CTLs in mice immunized with a recombinant vaccinia virus expressing human immunodeficiency virus (HIV)-1 envelope (Env). We found changes in cell-surface expression of CD11a, CD44, CD45RB, CD49d, CD54 and CD62L on Env-specific CD8(+) T cells that appeared to differentiate them from other CD8(+) T cells within 1 week to 1 month following immunization. Further, we saw an up-regulation of CD62L surface expression on Env-specific CD8(+) memory T cells several months after immunization. However, CD62L expression did not correlate with differences in the abilities of CTLs to proliferate or produce interferon gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha) in vitro in response to Env peptide stimulation. Moreover, the expression of CD62L did not allow differentiation of CTLs into subpopulations with distinct expansion kinetics in vivo after adoptive transfer into naïve mice and subsequent boosting of these mice with a recombinant adenovirus expressing HIV-1 Env. Therefore, the definition of memory CD8(+) T-cell subpopulations on the basis of CD62L expression in mice does not allow the delineation of functionally distinct CTL subpopulations.


AIDS Vaccines/immunology , L-Selectin/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Biomarkers/metabolism , Cell Proliferation , Female , Immunologic Memory , Immunophenotyping , Interferon-gamma/biosynthesis , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Spleen/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Vaccination
13.
J Virol ; 79(22): 14161-8, 2005 Nov.
Article En | MEDLINE | ID: mdl-16254351

Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.


Adenoviridae Infections/immunology , Adenoviridae/immunology , Capsid Proteins/genetics , Viral Vaccines , Adenoviridae/classification , Adenoviridae/genetics , Animals , Epitopes/chemistry , Epitopes/immunology , Immunization , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serotyping , Virus Replication
14.
J Virol ; 79(15): 9694-701, 2005 Aug.
Article En | MEDLINE | ID: mdl-16014931

The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.


Adenoviruses, Human/immunology , Genetic Vectors/immunology , Reassortant Viruses/immunology , Viral Vaccines/immunology , Animals , Antibody Formation , Cross Reactions , Drug Evaluation, Preclinical , Gene Products, gag/genetics , Genetic Therapy , Immunity, Cellular , Immunization, Secondary , Injections, Intramuscular , Mice , Mice, Inbred C57BL , Simian Immunodeficiency Virus/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage
15.
J Virol ; 79(13): 8131-41, 2005 Jul.
Article En | MEDLINE | ID: mdl-15956558

Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.


CD8-Positive T-Lymphocytes/immunology , Gene Products, env/immunology , Lymphocyte Depletion , Retroviridae Proteins, Oncogenic/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/pathogenicity , Viral Fusion Proteins/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Viral/blood , Immunophenotyping , Macaca mulatta , Sequence Deletion , Simian Immunodeficiency Virus/physiology , Viral Vaccines , Virus Replication/drug effects , Virus Replication/physiology
16.
J Immunol ; 174(11): 7179-85, 2005 Jun 01.
Article En | MEDLINE | ID: mdl-15905562

The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans remain poorly characterized. In this study, we assess the titers and primary determinants of Ad5-specific NAbs in individuals from both the United States and the developing world. Importantly, median Ad5-specific NAb titers were >10-fold higher in sub-Saharan Africa compared with the United States. Moreover, hexon-specific NAb titers were 4- to 10-fold higher than fiber-specific NAb titers in these cohorts by virus neutralization assays using capsid chimeric viruses. We next performed adoptive transfer studies in mice to evaluate the functional capacity of hexon- and fiber-specific NAbs to suppress the immunogenicity of a prototype rAd5-Env vaccine. Hexon-specific NAbs were remarkably efficient at suppressing Env-specific immune responses elicited by the rAd5 vaccine. In contrast, fiber-specific NAbs exerted only minimal suppressive effects on rAd5 vaccine immunogenicity. These data demonstrate that functionally significant Ad5-specific NAbs are directed primarily against the Ad5 hexon protein in both humans and mice. These studies suggest a potential strategy for engineering novel Ad5 vectors to evade dominant Ad5-specific NAbs.


Adenoviruses, Human/immunology , Antibodies, Viral/physiology , Capsid Proteins/immunology , Genetic Vectors/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Adenoviruses, Human/genetics , Adult , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/blood , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Dose-Response Relationship, Immunologic , Genetic Vectors/administration & dosage , Genetic Vectors/metabolism , Humans , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Immunosuppressive Agents/metabolism , Immunosuppressive Agents/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Seroepidemiologic Studies , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
17.
J Immunol ; 174(8): 4753-60, 2005 Apr 15.
Article En | MEDLINE | ID: mdl-15814700

Production of IL-2 and IFN-gamma by CD4+ T lymphocytes is important for the maintenance of a functional immune system in infected individuals. In the present study, we assessed the cytokine production profiles of functionally distinct subsets of CD4+ T lymphocytes in rhesus monkeys infected with pathogenic or attenuated SIV/simian human immunodeficiency virus (SHIV) isolates, and these responses were compared with those in vaccinated monkeys that were protected from immunodeficiency following pathogenic SHIV challenge. We observed that preserved central memory CD4+ T lymphocyte production of SIV/SHIV-induced IL-2 was associated with disease protection following primate lentivirus infection. Persisting clinical protection in vaccinated and challenged monkeys is thus correlated with a preserved capacity of the peripheral blood central memory CD4+ T cells to express this important immunomodulatory cytokine.


CD4-Positive T-Lymphocytes/immunology , HIV/immunology , Interleukin-2/biosynthesis , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/pharmacology , Animals , CD28 Antigens/metabolism , Gene Products, gag , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Humans , Immunologic Memory , In Vitro Techniques , Interferon-gamma/biosynthesis , Macaca mulatta , RNA, Viral/blood , SAIDS Vaccines/pharmacology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/biosynthesis , fas Receptor/metabolism
18.
J Virol ; 79(10): 6516-22, 2005 May.
Article En | MEDLINE | ID: mdl-15858035

The magnitude and durability of immune responses induced by replication-defective adenovirus serotype 5 (ADV5) vector-based vaccines were evaluated in the simian-human immunodeficiency virus/rhesus monkey model. A single inoculation of recombinant ADV5 vector constructs induced cellular and humoral immunity, but the rapid generation of neutralizing anti-Ad5 antibodies limited the immunity induced by repeated vector administration. The magnitude and durability of the immune responses elicited by these vaccines were greater when they were delivered as boosting immunogens in plasmid DNA-primed monkeys than when they were used as single-modality immunogens. Therefore, administration of ADV5-based vectors in DNA-primed subjects may be a preferred use of this vaccine modality for generating long-term immune protection.


Adenoviruses, Human/immunology , Antibodies, Viral/blood , Genetic Vectors/immunology , HIV Infections/immunology , Immunization, Secondary , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocytes/immunology , Vaccination , Viral Vaccines/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Adenovirus E1 Proteins/genetics , Adenovirus E3 Proteins/genetics , Adenoviruses, Human/genetics , Animals , Drug Evaluation, Preclinical , Gene Deletion , Genetic Vectors/genetics , HIV Antibodies/blood , HIV-1/genetics , HIV-1/immunology , Injections, Intramuscular , Macaca mulatta , Neutralization Tests , Plasmids/genetics , Simian Acquired Immunodeficiency Syndrome/blood , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Viral Vaccines/administration & dosage
19.
J Virol ; 79(10): 6554-9, 2005 May.
Article En | MEDLINE | ID: mdl-15858042

Poxvirus vaccine vectors, although capable of eliciting potent immune responses, pose serious health risks in immunosuppressed individuals. We therefore constructed five novel recombinant vaccinia virus vectors which contained overlapping deletions of coding regions for the B5R, B8R, B12R, B13R, B14R, B16R, B18R, and B19R immunomodulatory gene products and assessed them for both immunogenicity and pathogenicity. All five of these novel vectors elicited both cellular and humoral immunity to the inserted HIV-BH10 env comparable to that induced by the parental Wyeth strain vaccinia virus. However, deletion of these immunomodulatory genes did not increase the immunogenicity of these vectors compared with the parental vaccinia virus. Furthermore, four of these vectors were slightly less virulent and one was slightly more virulent than the Wyeth strain virus in neonatal mice. Attenuated poxviruses have potential use as safer alternatives to current replication-competent vaccinia virus. Improved vaccinia virus vectors can be generated by deleting additional genes to achieve a more significant viral attenuation.


AIDS Vaccines/immunology , Genetic Vectors/genetics , HIV Infections/immunology , Vaccinia virus/genetics , Vaccinia virus/pathogenicity , Animals , Female , Gene Deletion , HIV Antibodies/blood , HIV Envelope Protein gp120/genetics , Immunization , Immunization, Secondary , Lethal Dose 50 , Mice , Mice, Inbred BALB C , Vaccines, Synthetic/immunology , Virulence
20.
Nat Immunol ; 6(3): 247-52, 2005 Mar.
Article En | MEDLINE | ID: mdl-15685174

Viral escape from cytotoxic T lymphocytes (CTLs) can undermine immune control of human immunodeficiency virus 1. It is therefore important to assess the stability of viral mutations in CTL epitopes after transmission to naive hosts. Here we demonstrate the persistence of mutations in a dominant CTL epitope after transmission of simian immunodeficiency virus variants to major histocompatibility complex-matched rhesus monkeys. Transient reversions to wild-type sequences occurred and elicited CTLs specific for the wild-type epitope, resulting in immunological pressure that rapidly reselected the mutant viruses. These data suggest that mutations in dominant human immunodeficiency virus 1 CTL epitopes may accumulate in human populations with limited major histocompatibility complex heterogeneity by a mechanism involving dynamic CTL control of transiently reverted wild-type virus.


Epitopes, T-Lymphocyte/immunology , Mutation , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Epitopes, T-Lymphocyte/genetics , Humans , Immunodominant Epitopes/genetics , Macaca mulatta , Major Histocompatibility Complex/immunology , Simian Immunodeficiency Virus/pathogenicity
...