Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biomed J ; : 100659, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37690583

RESUMEN

The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we will examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.

3.
J Clin Med ; 11(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35268440

RESUMEN

Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.

5.
Gut ; 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36591611

RESUMEN

OBJECTIVES: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN: We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS: Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION: Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.

6.
Vaccines (Basel) ; 9(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34579205

RESUMEN

Human cytomegalovirus (HCMV) or human herpesvirus 5, is a ubiquitous human herpesvirus, which can cause severe disease in immunocompromised patients (AIDS patients and solid organ transplant or hematopoietic stem cell transplant recipients) [...].

7.
Viruses ; 13(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34452502

RESUMEN

Human cytomegalovirus (HCMV) can cause serious diseases in immunocompromised patients. Current antiviral inhibitors all target the viral DNA polymerase. They have adverse effects, and prolonged treatment can select for drug resistance mutations. Thus, new drugs targeting other stages of replication are an urgent need. The terminase complex (pUL56-pUL89-pUL51) is highly specific, has no counterpart in the human organism, and thus represents a target of choice for new antivirals development. This complex is required for DNA processing and packaging. pUL52 was shown to be essential for the cleavage of concatemeric HCMV DNA and crucial for viral replication, but its functional domains are not yet identified. Polymorphism analysis was performed by sequencing UL52 from 61 HCMV naive strains and from 14 HCMV strains from patients treated with letermovir. Using sequence alignment and homology modeling, we identified conserved regions and potential functional motifs within the pUL52 sequence. Recombinant viruses were generated with specific serine or alanine substitutions in these putative patterns. Within conserved regions, we identified residues essential for viral replication probably involved in CXXC-like or zinc finger motifs. These results suggest that they are essential for pUL52 structure/function. Thus, these patterns represent potential targets for the development of new antivirals.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Acetatos/farmacología , Secuencias de Aminoácidos , Antivirales/farmacología , Secuencia Conservada , Citomegalovirus/química , Citomegalovirus/efectos de los fármacos , Citomegalovirus/genética , Infecciones por Citomegalovirus/tratamiento farmacológico , Endodesoxirribonucleasas/genética , Humanos , Quinazolinas/farmacología , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
8.
Curr Opin Virol ; 49: 41-51, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34029994

RESUMEN

Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV-host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Interacciones Huésped-Patógeno , Animales , Cápside/metabolismo , ADN Circular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Hepatitis B Crónica/inmunología , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo , Transcripción Genética , Ensamble de Virus , Internalización del Virus/efectos de los fármacos
9.
Life (Basel) ; 11(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669389

RESUMEN

Herpesviruses are the causative agents of several diseases. Infections are generally mild or asymptomatic in immunocompetent individuals. In contrast, herpesvirus infections continue to contribute to significant morbidity and mortality in immunocompromised patients. Few drugs are available for the treatment of human herpesvirus infections, mainly targeting the viral DNA polymerase. Moreover, no successful therapeutic options are available for the Epstein-Barr virus or human herpesvirus 8. Most licensed drugs share the same mechanism of action of targeting the viral polymerase and thus blocking DNA polymerization. Resistances to antiviral drugs have been observed for human cytomegalovirus, herpes simplex virus and varicella-zoster virus. A new terminase inhibitor, letermovir, recently proved effective against human cytomegalovirus. However, the letermovir has no significant activity against other herpesviruses. New antivirals targeting other replication steps, such as capsid maturation or DNA packaging, and inducing fewer adverse effects are therefore needed. Targeting capsid assembly or DNA packaging provides additional options for the development of new drugs. In this review, we summarize recent findings on capsid assembly and DNA packaging. We also described what is known about the structure and function of capsid and terminase proteins to identify novels targets for the development of new therapeutic options.

10.
Med Sci (Paris) ; 36(4): 367-375, 2020 Apr.
Artículo en Francés | MEDLINE | ID: mdl-32356713

RESUMEN

Human cytomegalovirus (HCMV) is an important ubiquitous opportunistic pathogen that belongs to the betaherpesviridae. Primary HCMV infection is generally asymptomatic in immunocompetent individuals. In contrast, HCMV infection causes serious disease in immunocompromised patients and is the leading cause of congenital viral infection. Although they are effective, the use of conventional molecules is limited by the emergence of resistance and by their toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA packaging is performed by the terminase complex, which cleaves DNA to package the virus genome into the capsid. With no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials. However, its mechanism of action is unclear and it has no significant activity against other herpesvirus or non-human CMV.


TITLE: Le complexe terminase, une cible de choix dans le traitement de l'infection à cytomégalovirus humain. ABSTRACT: Le cytomégalovirus humain (CMVH) est un pathogène opportuniste majeur en cas d'immunodépression et représente la principale cause d'infection congénitale d'origine virale. Bien qu'efficace, l'utilisation des molécules conventionnelles est limitée par leur toxicité et par l'émergence de résistance du virus, rendant nécessaire le développement de nouveaux traitements. Lors de la réplication du CMVH, l'encapsidation de l'ADN est réalisée par le complexe terminase qui clive l'ADN pour empaqueter le génome dans la capside. L'absence d'homologues dans les cellules des mammifères rend les protéines du complexe terminase des cibles idéales pour des antiviraux spécifiques. Une nouvelle molécule, le letermovir, cible une étape exclusivement virale en interagissant avec le complexe terminase. Son efficacité a été prouvée lors d'essais cliniques de phase III. Néanmoins, son mécanisme d'action n'est, à ce jour, pas élucidé et aucune activité n'est observée contre les autres herpèsvirus.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Citomegalovirus/tratamiento farmacológico , Endodesoxirribonucleasas/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Citomegalovirus/patogenicidad , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/inmunología , Endodesoxirribonucleasas/fisiología , Humanos , Huésped Inmunocomprometido , Terapia Molecular Dirigida/tendencias , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/fisiología , Ensamble de Virus/efectos de los fármacos , Ensamble de Virus/fisiología , Replicación Viral/efectos de los fármacos
11.
Curr Hepatol Rep ; 19(3): 235-244, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36034467

RESUMEN

Purpose of Review: Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), is a major cause of advanced liver disease and hepatocellular carcinoma (HCC) worldwide. HBV replication is characterized by the synthesis of covalently closed circular (ccc) DNA which is not targeted by antiviral nucleos(t)ide analogues (NUCs) the key modality of standard of care. While HBV replication is successfully suppressed in treated patients, they remain at risk for developing HCC. While functional cure, characterized by loss of HBsAg, is the first goal of novel antiviral therapies, curative treatments eliminating cccDNA remain the ultimate goal. This review summarizes recent advances in the discovery and development of novel therapeutic strategies and their impact on cccDNA biology. Recent Findings: Within the last decade, substantial progress has been made in the understanding of cccDNA biology including the discovery of host dependency factors, epigenetic regulation of cccDNA transcription and immune-mediated degradation. Several approaches targeting cccDNA either in a direct or indirect manner are currently at the stage of discovery, preclinical or early clinical development. Examples include genome-editing approaches, strategies targeting host dependency factors or epigenetic gene regulation, nucleocapsid modulators and immune-mediated degradation. Summary: While direct-targeting cccDNA strategies are still largely at the preclinical stage of development, capsid assembly modulators and immune-based approaches have reached the clinical phase. Clinical trials are ongoing to assess their efficacy and safety in patients including their impact on viral cccDNA. Combination therapies provide additional opportunities to overcome current limitations of individual approaches.

12.
Viruses ; 11(12)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779110

RESUMEN

The human cytomegalovirus (HCMV) terminase complex is part of DNA-packaging machinery that delivers a unit-length genome into a procapsid. Sequence comparison of herpesvirus homologs allowed us to identify a potential LATLNDIERFL and zinc finger pattern in N-terminal part of pUL56. Recombinant viruses were generated with specific serine or alanine substitutions in these putative patterns. We identified a LATLNDIERFL pattern characteristic of LAGLIDADG homing endonucleases and a metal-binding pattern involving the cysteine and histidine residues C191-X2-C194-X22-C217-X-H219 (CCCH) close to the region conferring letermovir resistance. These patterns are crucial for viral replication, suggesting that they are essential for pUL56 structure and function. Thus, these patterns represent potential targets for the development of new antivirals such as small molecules or peptides and may allow to better understand the letermovir mechanism of action.


Asunto(s)
Citomegalovirus/enzimología , Farmacorresistencia Viral/genética , Endodesoxirribonucleasas/genética , Proteínas Estructurales Virales/genética , Acetatos/farmacología , Secuencia de Aminoácidos , Antivirales/farmacología , Citomegalovirus/genética , Citomegalovirus/fisiología , Empaquetamiento del ADN , Humanos , Dominios Proteicos , Quinazolinas/farmacología , Alineación de Secuencia , Replicación Viral , Dedos de Zinc/genética
13.
Hepatology ; 70(5): 1506-1520, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31062385

RESUMEN

Although adaptive immune responses against hepatitis C virus (HCV) infection have been studied in great detail, the role of innate immunity in protection against HCV infection and immune evasion is only partially understood. Interferon-induced transmembrane proteins (IFITMs) are innate effector proteins restricting host cell entry of many enveloped viruses, including HCV. However, the clinical impact of IFITMs on HCV immune escape remains to be determined. Here, we show that IFITMs promote viral escape from the neutralizing antibody (nAb) response in clinical cohorts of HCV-infected patients. Using pseudoparticles bearing HCV envelope proteins from acutely infected patients, we show that HCV variants isolated preseroconversion are more sensitive to the antiviral activity of IFITMs than variants from patients isolated during chronic infection postseroconversion. Furthermore, HCV variants escaping nAb responses during liver transplantation exhibited a significantly higher resistance to IFITMs than variants that were eliminated posttransplantation. Gain-of-function and mechanistic studies revealed that IFITMs markedly enhance the antiviral activity of nAbs and suggest a cooperative effect of human monoclonal antibodies and IFITMs for antibody-mediated neutralization driving the selection pressure in viral evasion. Perturbation studies with the IFITM antagonist amphotericin B revealed that modulation of membrane properties by IFITM proteins is responsible for the IFITM-mediated blockade of viral entry and enhancement of antibody-mediated neutralization. Conclusion: Our results indicate IFITM proteins as drivers of viral immune escape and antibody-mediated HCV neutralization in acute and chronic HCV infection. These findings are of clinical relevance for the design of urgently needed HCV B-cell vaccines and might help to increase the efficacy of future vaccine candidates.


Asunto(s)
Hepacivirus/inmunología , Hepacivirus/patogenicidad , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Hepatitis C/inmunología , Hepatitis C/virología , Evasión Inmune , Interferones/fisiología , Proteínas de la Membrana/inmunología , Enfermedad Aguda , Células Cultivadas , Hepatocitos , Humanos
15.
Front Microbiol ; 9: 2483, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405556

RESUMEN

Promising new inhibitors that target the viral helicase-primase complex have been reported to block replication of herpes simplex and varicella-zoster viruses, but they have no activity against human cytomegalovirus (HCMV), another herpesvirus. The HCMV helicase-primase complex (pUL105-pUL102-pUL70) is essential for viral DNA replication and could thus be a relevant antiviral target. The roles of the individual subunits composing this complex remain to be defined. By using sequence alignment of herpesviruses homologs, we identified conserved amino acids in the putative pUL105 ATP binding site and in the putative pUL70 zinc finger pattern. Mutational analysis of several of these amino acids both in pUL105 and pUL70, proved that they are crucial for viral replication. We also constructed, by homology modeling, a theoretical structure of the pUL105 N-terminal domain which indicates that the mutated conserved amino acids in this domain could be involved in ATP hydrolysis.

16.
Front Immunol ; 9: 1436, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977246

RESUMEN

With more than 71 million people chronically infected, hepatitis C virus (HCV) is one of the leading causes of liver disease and hepatocellular carcinoma. While efficient antiviral therapies have entered clinical standard of care, the development of a protective vaccine is still elusive. Recent studies have shown that the HCV life cycle is closely linked to lipid metabolism. HCV virions associate with hepatocyte-derived lipoproteins to form infectious hybrid particles that have been termed lipo-viro-particles. The close association with lipoproteins is not only critical for virus entry and assembly but also plays an important role during viral pathogenesis and for viral evasion from neutralizing antibodies. In this review, we summarize recent findings on the functional role of apolipoproteins for HCV entry and assembly. Furthermore, we highlight the impact of HCV-apolipoprotein interactions for evasion from neutralizing antibodies and discuss the consequences for antiviral therapy and vaccine design. Understanding these interactions offers novel strategies for the development of an urgently needed protective vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...