Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Adv Mater ; : e2312299, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710202

Efforts to engineer high-performance protein-based materials inspired by nature have mostly focused on altering naturally occurring sequences to confer the desired functionalities, whereas de novo design lags significantly behind and calls for unconventional innovative approaches. Here, using partially disordered elastin-like polypeptides (ELPs) as initial building blocks this work shows that de novo engineering of protein materials can be accelerated through hybrid biomimetic design, which this work achieves by integrating computational modeling, deep neural network, and recombinant DNA technology. This generalizable approach involves incorporating a series of de novo-designed sequences with α-helical conformation and genetically encoding them into biologically inspired intrinsically disordered repeating motifs. The new ELP variants maintain structural conformation and showed tunable supramolecular self-assembly out of thermal equilibrium with phase behavior in vitro. This work illustrates the effective translation of the predicted molecular designs in structural and functional materials. The proposed methodology can be applied to a broad range of partially disordered biomacromolecules and potentially pave the way toward the discovery of novel structural proteins.

2.
Adv Mater ; : e2402282, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38577824

Biological tissues, such as tendons or cartilage, possess high strength and toughness with very low plastic deformations. In contrast, current strategies to prepare tough hydrogels commonly utilize energy dissipation mechanisms based on physical bonds that lead to irreversible large plastic deformations, thus limiting their load-bearing applications. This article reports a strategy to toughen hydrogels using fibrillar connected double networks (fc-DN), which consist of two distinct but chemically interconnected polymer networks, that is, a polyacrylamide network and an acrylated agarose fibril network. The fc-DN design allows efficient stress transfer between the two networks and high fibril alignment during deformation, both contributing to high strength and toughness, while the chemical crosslinking ensures low plastic deformations after undergoing high strains. The mechanical properties of the fc-DN network can be readily tuned to reach an ultimate tensile strength of 8 MPa and a toughness of above 55 MJ m-3, which is 3 and 3.5 times more than that of fibrillar double network hydrogels without chemical connections, respectively. The application potential of the fc-DN hydrogel is demonstrated as load-bearing damping material for a jointed robotic lander. The fc-DN design provides a new toughening mechanism for hydrogels that can be used for soft robotics or bioelectronic applications.

3.
Biomacromolecules ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38507559

Cellulose nanocrystals (CNCs) are biobased colloidal nanorods that have unlocked new opportunities in the area of sustainable functional nanomaterials including structural films and coatings, biomedical devices, energy, sensing, and composite materials. While selective light reflection and sensing develop from the typical chiral nematic (cholesteric, Nem*) liquid crystallinity exhibited by CNCs, a wealth of technologies would benefit from a nematic liquid crystal (LC) with CNC uniaxial alignment. Therefore, this study answers the central question of whether surfactant complexation suppresses CNC chirality in favor of nematic lyotropic and thermotropic liquid crystallinity. Therein, we use a common surfactant having both nonionic and anionic blocks, namely, oligo(ethylene glycol) alkyl-3-sulfopropyl diether potassium salt (an alcohol ethoxy sulfonate (AES)). AES forms complexes with CNCs in toluene (a representative for nonpolar organic solvent) via hydrogen bonding with an AES' oligo(ethylene glycol) block. A sufficiently high AES weight fraction endows the dispersibility of CNC in toluene. Lyotropic liquid crystallinity with Schlieren textures containing two- and four-point brush defects is observed in polarized optical microscopy (POM), along with the suppression of the cholesteric fingerprint textures. The results suggest a nematic (Nem) phase in toluene. Moreover, thermotropic liquid crystallinity is observed by incorporating an excess of AES, in the absence of an additional solvent and upon mild heating. The Schlieren textures suggest a nematic system that undergoes uniaxial alignment under mild shear. Importantly, replacing AES with a corresponding nonionic surfactant does not lead to liquid crystalline properties, suggesting electrostatic structural control of the charged end group of AES. Overall, we introduce a new avenue to suppress CNC chirality to achieve nematic structures, which resolves the long-sought uniaxial alignment of CNCs in filaments, composite materials, and optical devices.

4.
Adv Sci (Weinh) ; 11(5): e2305099, 2024 Feb.
Article En | MEDLINE | ID: mdl-38044310

2D transition metal carbides and nitrides (MXenes) suggest an uncommonly broad combination of important functionalities amongst 2D materials. Nevertheless, MXene suffers from facile oxidation and colloidal instability upon conventional water-based processing, thus limiting applicability. By experiments and theory, It is suggested that for stability and dispersibility, it is critical to select uncommonly high permittivity solvents such as N-methylformamide (NMF) and formamide (FA) (εr  = 171, 109), unlike the classical solvents characterized by high dipole moment and polarity index. They also allow high MXene stacking order within thin films on carbon nanotube (CNT) substrates, showing very high Terahertz (THz) shielding effectiveness (SE) of 40-60 dB at 0.3-1.6 THz in spite of the film thinness < 2 µm. The stacking order and mesoscopic porosity turn relevant for THz-shielding as characterized by small-angle X-ray scattering (SAXS). The mechanistic understanding of stability and structural order allows guidance for generic MXene applications, in particular in telecommunication, and more generally processing of 2D materials.

5.
ACS Omega ; 8(42): 39345-39353, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37901556

Hierarchical self-assemblies of soft matter involving triggerable or switchable structures at different length scales have been pursued toward multifunctional behaviors and complexity inspired by biological matter. They require several and balanced competing attractive and repulsive interactions, which provide a grand challenge in particular in the "bulk" state, i.e., in the absence of plasticizing solvents. Here, we disclose that zwitterionic bis-n-tetradecylphosphobetaine, as a model compound, shows a complex thermally switchable hierarchical self-assembly in the solvent-free state. It shows polymorphism and heating-induced reversible switching from low-temperature molecular-level assemblies to high-temperature hierarchical self-assemblies, unexpectedly combining colloidal and molecular self-assemblies, as inferred by synchrotron small-angle X-ray scattering (SAXS). The high-temperature phase sustains birefringent flow, indicating a new type of hierarchical thermotropic liquid crystallinity. The high-temperature colloidal-level SAXS reflections suggest indexation as a 2D oblique pattern and their well-defined layer separation in the perpendicular direction. We suggest that the colloidal self-assembled motifs are 2D nanoplatelets formed by the lateral packing of the molecules, where the molecular packing frustration between the tightly packed zwitterionic moieties and the coiled alkyl chains demanding more space limits the lateral platelet growth controlled by the alkyl stretching entropy. An indirect proof is provided by the addition of plasticizing ionic liquids, which relieve the ionic dense packings of zwitterions, thus allowing purely smectic liquid crystallinity without the colloidal level order. Thus, molecules with a simple chemical structure can lead to structural hierarchy and tunable complexity in the solvent-free state by balancing the competing long-range electrostatics and short-range nanosegregations.

6.
Virology ; 578: 103-110, 2023 01.
Article En | MEDLINE | ID: mdl-36493505

Potato virus A (PVA) is a plant-infecting RNA virus that produces flexible particles with a high aspect ratio. PVA has been investigated extensively for its infection biology, however, its potential to serve as a nanopatterning platform remains unexplored. Here, we study the liquid crystal and interfacial self-assembly behavior of PVA particles. Furthermore, we generate nanopatterned surfaces using self-assembled PVA particles through three different coating techniques: drop-casting, drop-top deposition and flow-coating. The liquid crystal phase of PVA solution visualized by polarized optical microscopy revealed a chiral nematic phase in water, while in pH 8 buffer it produced a nematic phase. This allowed us to produce thin films with either randomly or anisotropically oriented cylindrical nanopatterns using drop-top and flow-coating methods. Overall, this study explores the self-assembly process of PVA in different conditions, establishing a starting point for PVA self-assembly research and contributing a virus-assisted fabrication technique for nanopatterned surfaces.


Potyvirus , Microscopy
7.
Nanoscale ; 14(41): 15542, 2022 Oct 27.
Article En | MEDLINE | ID: mdl-36260479

Correction for 'ß-1,3-Glucan synthesis, novel supramolecular self-assembly, characterization and application' by Robert Pylkkänen et al., Nanoscale, 2022, https://doi.org/10.1039/D2NR02731C.

8.
Nanoscale ; 14(41): 15533-15541, 2022 Oct 27.
Article En | MEDLINE | ID: mdl-36194159

ß-1,3-Glucans are ubiquitously observed in various biological systems with diverse physio-ecological functions, yet their underlying assembly mechanism and multiscale complexation in vitro remains poorly understood. Here, we provide for the first-time evidence of unidentified ß-1,3-glucan supramolecular complexation into intricate hierarchical architectures over several length scales. We mediated these unique assemblies using a recombinantly produced ß-1,3-glucan phosphorylase (Ta1,3BGP) by fine-tuning solution conditions during particle nucleation and growth. We report a synthesis of interconnected parallel hexagonal lamellae composed of 8 nm thick sheets of highly expanded paracrystals. The architecture consists of ß-1,3-glucan triple-helices with considerable inter-intra hydrogen bonding within, as well as in between adjacent triple-helices. The results extend our understanding of ß-1,3-glucan molecular organization and shed light on different aspects of the crystallization processes of biomolecules into structures unseen by nature. The presented versatile synthesis yields new materials for diverse medical and industrial applications.


beta-Glucans , beta-Glucans/chemistry , Glucans/chemistry , Crystallization , Protein Structure, Secondary
9.
Nanoscale ; 11(10): 4546-4551, 2019 Mar 07.
Article En | MEDLINE | ID: mdl-30806410

The arrangements of metal nanoparticles into spatially ordered structures is still challenging, but DNA-based nanostructures have proven to be feasible building blocks in directing the higher-ordered arrangements of nanoparticles. However, an additional DNA functionalization of the particles is often required to link them to the DNA frames. Herein, we show that ordered 3D metal nanoparticle superlattices could be formed also by plainly employing electrostatic interactions between particles and DNA nanostructures. By utilizing the negatively charged DNA origami surface, we were able to assemble 6-helix bundle DNA origami and cationic gold nanoparticles (AuNPs) into well-ordered 3D tetragonal superlattices. Further, the results reveal that shape and charge complementarity between the building blocks are crucial parameters for lattice formation. Our method is not limited to only AuNPs and the origami shapes presented here, and could therefore be used in construction of a variety of functional materials.


DNA/chemistry , Metal Nanoparticles/chemistry , Nucleic Acid Conformation , Static Electricity
10.
ACS Nano ; 12(8): 8029-8036, 2018 08 28.
Article En | MEDLINE | ID: mdl-30028590

Cyclophanes are macrocyclic supramolecular hosts famous for their ability to bind atomic or molecular guests via noncovalent interactions within their well-defined cavities. In a similar way, porous crystalline networks, such as metal-organic frameworks, can create microenvironments that enable controlled guest binding in the solid state. Both types of materials often consist of synthetic components, and they have been developed within separate research fields. Moreover, the use of biomolecules as their structural units has remained elusive. Here, we have synthesized a library of organic cyclophanes and studied their electrostatic self-assembly with biological metal-binding protein cages (ferritins) into ordered structures. We show that cationic pillar[5]arenes and ferritin cages form biohybrid cocrystals with an open protein network structure. Our cyclophane-protein cage frameworks bridge the gap between molecular frameworks and colloidal nanoparticle crystals and combine the versatility of synthetic supramolecular hosts with the highly selective recognition properties of biomolecules. Such host-guest materials are interesting for porous material applications, including water remediation and heterogeneous catalysis.


Ethers, Cyclic/chemistry , Ferritins/chemistry , Metal-Organic Frameworks/chemistry , Crystallization , Models, Molecular , Particle Size , Porosity , Surface Properties
11.
Nat Commun ; 8(1): 671, 2017 09 22.
Article En | MEDLINE | ID: mdl-28939801

Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.Colloidal self-assembly is a unique method to produce three-dimensional materials with well-defined hierarchical structures and functionalities. Liljeström et al. show controlled preparation of macroscopic chiral wires with helical plasmonic superlattice structure composed of metal nanoparticles and viruses.


Gold/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Viral Proteins/chemistry , Colloids/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Models, Molecular , Nanotubes/chemistry , Nanotubes/ultrastructure , Nanowires/ultrastructure , Particle Size , Scattering, Small Angle , Tobacco Mosaic Virus/chemistry , Tobacco Mosaic Virus/ultrastructure , Viral Proteins/ultrastructure , X-Ray Diffraction
12.
J Mater Chem B ; 5(2): 341-347, 2017 Jan 14.
Article En | MEDLINE | ID: mdl-32263552

We report three surfactants, with cationic N,N-di-(3-aminopropyl)-N-methylamine (DAPMA) head groups and aliphatic chains connected via an amide linkage, and investigate their ability to self-assemble and bind polyanionic heparin - a process of potential clinical importance in coagulation control. Modifying the hydrophobic chain length tunes the self-assembly event, with C16-DAPMA having the lowest critical micelle concentration and also being the optimal heparin binder. Remarkably highly structured hierarchical nanoscale aggregates are formed on binding between the spherical cationic micelles and linear polyanionic heparin. C14-DAPMA and C16-DAPMA yield organized polycrystalline assemblies as observed by transmission electron microscopy (TEM), predicted in solution by mesoscale simulations and characterized by small-angle X-ray scattering (SAXS). This confirms that the micelles remain intact during the hierarchical assembly process and become packed in a face-centered cubic manner. The nanoscale assembly formed by C16-DAPMA showed the highest degree of order. Importantly, these studies indicate the impact of hydrophobic modification on self-assembly and heparin binding, demonstrate remarkably high stability of these self-assembled micelles even when forming strong electrostatic interactions with heparin, and provide structural insights into nanoscale hierarchical electrostatic assemblies.

13.
Soft Matter ; 12(34): 7159-65, 2016 Sep 14.
Article En | MEDLINE | ID: mdl-27491728

We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions.

14.
ACS Nano ; 10(1): 1565-71, 2016 Jan 26.
Article En | MEDLINE | ID: mdl-26691783

Phthalocyanines (Pc) are non-natural organic dyes with wide and deep impact in materials science, based on their intense absorption at the near-infrared (NIR), long-lived fluorescence and high singlet oxygen ((1)O2) quantum yields. However, Pcs tend to stack in buffer solutions, losing their ability to generate singlet oxygen, which limits their scope of application. Furthermore, Pcs are challenging to organize in crystalline structures. Protein cages, on the other hand, are very promising biological building blocks that can be used to organize different materials into crystalline nanostructures. Here, we combine both kinds of components into photoactive biohybrid crystals. Toward this end, a hierarchical organization process has been designed in which (a) a supramolecular complex is formed between octacationic zinc Pc (1) and a tetraanionic pyrene (2) derivatives, driven by electrostatic and π-π interactions, and (b) the resulting tetracationic complex acts as a molecular glue that binds to the outer surface anionic patches of the apoferritin (aFt) protein cage, inducing cocrystallization. The obtained ternary face-centered cubic (fcc) packed cocrystals, with diameters up to 100 µm, retain the optical properties of the pristine dye molecules, such as fluorescence at 695 nm and efficient light-induced (1)O2 production. Considering that (1)O2 is utilized in important technologies such as photodynamic therapy (PDT), water treatments, diagnostic arrays and as an oxidant in organic synthesis, our results demonstrate a powerful methodology to create functional biohybrid systems with unprecedented long-range order. This approach should greatly aid the development of nanotechnology and biomedicine.


Apoferritins/chemistry , Coloring Agents/chemistry , Indoles/chemistry , Nanostructures/chemistry , Organometallic Compounds/chemistry , Pyrenes/chemistry , Crystallization , Isoindoles , Nanotechnology/methods , Photochemical Processes , Singlet Oxygen/chemistry , Zinc Compounds
15.
ACS Nano ; 9(11): 11278-85, 2015 Nov 24.
Article En | MEDLINE | ID: mdl-26497975

Atomic crystal structure affects the electromagnetic and thermal properties of common matter. Similarly, the nanoscale structure controls the properties of higher length-scale metamaterials, for example, nanoparticle superlattices and photonic crystals. Electrostatic self-assembly of oppositely charged nanoparticles has recently become a convenient way to produce crystalline nanostructures. However, understanding and controlling the assembly of soft nonmetallic particle crystals with long-range translational order remains a major challenge. Here, we show the electrostatic self-assembly of binary soft particle cocrystals, consisting of apoferritin protein cages and poly(amidoamine) dendrimers (PAMAM), with very large crystal domain sizes. A systematic series of PAMAM dendrimers with generations from two to seven were used to produce the crystals, which showed a dendrimer generation dependency on the crystal structure and lattice constant. The systematic approach presented here offers a transition from trial-and-error experiments to a fundamental understanding and control over the nanostructure. The structure and stability of soft particle cocrystals are of major relevance for applications where a high degree of structural control is required, for example, protein-based mesoporous materials, nanoscale multicompartments, and metamaterials.

16.
Chemistry ; 21(41): 14433-9, 2015 Oct 05.
Article En | MEDLINE | ID: mdl-26134175

Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self-assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G'≫G'') with outstanding mechanical properties and storage modulus of G'>1000 Pa. The G' value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol-solvated dendrimers into an aqueous solution. Cryogenic TEM, small-angle X-ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small-molecule drugs, to be used for sustained release in drug delivery.


Dendrimers/chemistry , Hydrogels/chemistry , Peptides/chemistry , Surface-Active Agents/chemistry , Drug Delivery Systems , Drug Liberation , Ethanol/chemistry , Hydrophobic and Hydrophilic Interactions , Temperature
17.
Angew Chem Int Ed Engl ; 54(27): 7990-3, 2015 Jun 26.
Article En | MEDLINE | ID: mdl-26012495

Cationic gold nanoparticles offer intriguing opportunities as drug carriers and building blocks for self-assembled systems. Despite major progress on gold nanoparticle research in general, the synthesis of cationic gold particles larger than 5 nm remains a major challenge, although these species would give a significantly larger plasmonic response compared to smaller cationic gold nanoparticles. Herein we present the first reported synthesis of cationic gold nanoparticles with tunable sizes between 8-20 nm, prepared by a rapid two-step phase-transfer protocol starting from simple citrate-capped particles. These cationic particles form ordered self-assembled structures with negatively charged biological components through electrostatic interactions.

18.
Int J Mol Sci ; 16(5): 10201-13, 2015 May 05.
Article En | MEDLINE | ID: mdl-25950765

Synthetic macromolecules that can bind and co-assemble with proteins are important for the future development of biohybrid materials. Active systems are further required to create materials that can respond and change their behavior in response to external stimuli. Here we report that stimuli-responsive linear-branched diblock copolymers consisting of a cationic multivalent dendron with a linear thermoresponsive polymer tail at the focal point, can bind and complex Pyrococcus furiosus ferritin protein cages into crystalline arrays. The multivalent dendron structure utilizes cationic spermine units to bind electrostatically on the surface of the negatively charged ferritin cage and the in situ polymerized poly(di(ethylene glycol) methyl ether methacrylate) linear block enables control with temperature. Cloud point of the final product was determined with dynamic light scattering (DLS), and it was shown to be approximately 31 °C at a concentration of 150 mg/L. Complexation of the polymer binder and apoferritin was studied with DLS, small-angle X-ray scattering, and transmission electron microscopy, which showed the presence of crystalline arrays of ferritin cages with a face-centered cubic (fcc, Fm3m)) Bravais lattice where lattice parameter a=18.6 nm. The complexation process was not temperature dependent but the final complexes had thermoresponsive characteristics with negative thermal expansion.


Bacterial Proteins/chemistry , Ferritins/chemistry , Polymethacrylic Acids/chemistry , Spermine/chemistry , Dendrimers/chemistry , Polymerization , Pyrococcus furiosus/chemistry , Temperature
19.
Biomacromolecules ; 16(7): 2006-11, 2015 Jul 13.
Article En | MEDLINE | ID: mdl-25974032

A genetically encoded system for expression of supramolecular protein assemblies (SMPAs) based on a fusion construct between ferritin and citrine (YFP) was transferred from a mammalian to a bacterial host. The assembly process is revealed to be independent of the expression host, while dimensions and level of order of the assembled structures were influenced by the host organism. An additional level of interactions, namely, coalescence between the preformed SMPAs, was observed during the purification process. SAXS investigation revealed that upon coalescence, the local order of the individual SMPAs was preserved. Finally, the chaotropic agent urea effectively disrupted both the macroscopic coalescence and the interactions at the nanoscale until the level of the single ferritin cage.


Bacterial Proteins/metabolism , Ferritins/metabolism , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ferritins/chemistry , Ferritins/genetics , HeLa Cells , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Models, Molecular , Protein Interaction Maps , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Scattering, Small Angle , X-Ray Diffraction
20.
Nat Commun ; 5: 4445, 2014 Jul 18.
Article En | MEDLINE | ID: mdl-25033911

Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.


Bromovirus/chemistry , Nanostructures/chemistry , Proteins/chemistry , Avidin/chemistry , Biotin/chemistry , Bromovirus/ultrastructure , Crystallization/methods , Dendrimers/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Microscopy, Electron, Transmission , Scattering, Small Angle , Spectrophotometry, Ultraviolet , Static Electricity
...