Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(19): 8141-8153, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483202

RESUMEN

Metal-organic frameworks (MOFs) featuring zirconium-based clusters are widely used for the development of functionalized materials due to their exceptional stability. In this study, we report the synthesis of a novel N,N,N-ligand compatible with a biphenyl dicarboxylic acid-based MOF. However, the resulting copper(I) complex exhibited unexpected coordination behaviour, lacking the intended trifold coordination motif. Herein, we demonstrate the successful immobilization of a bioinspired ligand within the MOF, which preserved its crystalline and porous nature while generating a well-defined copper site. Comprehensive spectroscopic analyses, including X-ray absorption, UV/Vis, and infrared spectroscopy, were conducted to investigate the copper site and its thermal behaviour. The immobilized ligand exhibited the desired tridentate coordination to copper, providing access to a coordination motif otherwise unattainable. Notably, water molecules were also found to coordinate to copper. Upon heating, the copper centre within the MOF exhibited reversible dehydration, suggesting facile creation of open coordination sites. Furthermore, the copper site displayed reduction at elevated temperatures and subsequent susceptibility to oxidation by molecular oxygen. Lastly, both the molecular complexes and the MOF were evaluated as catalysts for the oxidation of cyclohexane using hydrogen peroxide. This work highlights the successful immobilization of a bioinspired ligand in a zirconium-based MOF, shedding light on the structural features, thermal behaviour, and catalytic potential of the resulting copper sites.

2.
Chemistry ; 29(48): e202301760, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37272919

RESUMEN

Herein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M6 O4 (OH)6 (PMA)2 (H2 PMA)]×H2 O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H4 PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.0 Å, respectively, lined with -COOH groups. Thermal stabilities of up to 400 °C in air, chemical stability in water at pH 1 to 12 and water uptake of 17 mol/mol prompted us to study the proton exchange of the µ2 -OH, µ3 -OH of the IBU and -COOH groups of the linker by titration with LiOH. Comparison of the pKa values with three UiO-66 derivatives confirms distinct pKa value ranges and trends for the different acidic protons. Furthermore, the preparation of Zr-CAU-61 membranes and first results on permeation of dyes and ions in aqueous solutions are presented.

3.
ACS Catal ; 12(2): 1520-1531, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35096471

RESUMEN

The transition from integrated petrochemical complexes toward decentralized chemical plants utilizing distributed feedstocks calls for simpler downstream unit operations. Less separation steps are attractive for future scenarios and provide an opportunity to design the next-generation catalysts, which function efficiently with effluent reactant mixtures. The methanol to olefins (MTO) reaction constitutes the second step in the conversion of CO2, CO, and H2 to light olefins. We present a series of isomorphically substituted zeotype catalysts with the AEI topology (MAPO-18s, M = Si, Mg, Co, or Zn) and demonstrate the superior performance of the M(II)-substituted MAPO-18s in the conversion of MTO when tested at 350 °C and 20 bar with reactive feed mixtures consisting of CH3OH/CO/CO2/H2. Co-feeding high pressure H2 with methanol improved the catalyst activity over time, but simultaneously led to the hydrogenation of olefins (olefin/paraffin ratio < 0.5). Co-feeding H2/CO/CO2/N2 mixtures with methanol revealed an important, hitherto undisclosed effect of CO in hindering the hydrogenation of olefins over the Brønsted acid sites (BAS). This effect was confirmed by dedicated ethene hydrogenation studies in the absence and presence of CO co-feed. Assisted by spectroscopic investigations, we ascribe the favorable performance of M(II)APO-18 under co-feed conditions to the importance of the M(II) heteroatom in altering the polarity of the M-O bond, leading to stronger BAS. Comparing SAPO-18 and MgAPO-18 with BAS concentrations ranging between 0.2 and 0.4 mmol/gcat, the strength of the acidic site and not the density was found to be the main activity descriptor. MgAPO-18 yielded the highest activity and stability upon syngas co-feeding with methanol, demonstrating its potential to be a next-generation MTO catalyst.

4.
J Am Chem Soc ; 143(43): 17947-17952, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34695352

RESUMEN

Flexible metal-organic frameworks (MOFs) are known for their vast functional diversities and variable pore architectures. Dynamic motions or perturbations are among the highly desired flexibilities, which are key to guest diffusion processes. Therefore, probing such motions, especially at an atomic level, is crucial for revealing the unique properties and identifying the applications of MOFs. Nuclear magnetic resonance (NMR) and single-crystal X-ray diffraction (SCXRD) are the most important techniques to characterize molecular motions but require pure samples or large single crystals (>5 × 5 × 5 µm3), which are often inaccessible for MOF synthesis. Recent developments of three-dimensional electron diffraction (3D ED) have pushed the limits of single-crystal structural analysis. Accurate atomic information can be obtained by 3D ED from nanometer- and submicrometer-sized crystals and samples containing multiple phases. Here, we report the study of molecular motions by using the 3D ED method in MIL-140C and UiO-67, which are obtained as nanosized crystals coexisting in a mixture. In addition to an ab initio determination of their framework structures, we discovered that motions of the linker molecules could be revealed by observing the thermal ellipsoid models and analyzing the atomic anisotropic displacement parameters (ADPs) at room temperature (298 K) and cryogenic temperature (98 K). Interestingly, despite the same type of linker molecule occupying two symmetry-independent positions in MIL-140C, we observed significantly larger motions for the isolated linkers in comparison to those reinforced by π-π stacking. With an accuracy comparable to that of SCXRD, we show for the first time that 3D ED can be a powerful tool to investigate dynamics at an atomic level, which is particularly beneficial for nanocrystalline materials and/or phase mixtures.

5.
Angew Chem Int Ed Engl ; 59(48): 21397-21402, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32902113

RESUMEN

Herein, we report the discovery of a toroidal inorganic cluster of zirconium(IV) oxysulfate of unprecedented size with the formula Zr70 (SO4 )58 (O/OH)146 ⋅x(H2 O) (Zr70 ), which displays different packing of ring units and thus several polymorphic crystal structures. The ring measures over 3 nm across, has an inner cavity of 1 nm and displays a pseudo-10-fold rotational symmetry of Zr6 octahedra bridged by an additional Zr in the outer rim of the ring. Depending on the co-crystallizing species, the rings form various crystalline phases in which the torus units are connected in extended chain and network structures. One phase, in which the ring units are arranged in layers and form one-dimensional channels, displays high permanent porosity (BET surface area: 241 m2 g-1 ), and thus demonstrates a functional property for potential use in, for example, adsorption or heterogeneous catalysis.

6.
RSC Adv ; 10(15): 9052-9062, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35496564

RESUMEN

Four different ruthenium(ii) complexes were incorporated into the metal-organic framework (MOF) UiO-67 using three different synthetic strategies: premade linker synthesis, postsynthetic functionalization, and postsynthetic linker exchange. One of these complexes was of the type (N-N)3Ru2+, and three of the complexes were of the type (N-N)2(N-C)Ru+, where N-N is a bipyridine-type ligand and N-C is a cyclometalated phenylpyridine-type ligand. The resulting materials were characterized by PXRD, SC-XRD (the postsynthetic functionalization MOFs), N2 sorption, TGA-DSC, SEM, EDS, and UV-Vis spectroscopy, and were digested in base for subsequent 1H NMR analysis. The absorption profiles of the MOFs that were functionalized with cyclometalated Ru(ii) complexes extend significantly further into the visible region of the spectrum compared to the absorption profiles of the MOFs that were functionalized with the non-cyclometalated reference, (N-N)3Ru2+.

7.
Chem Sci ; 10(12): 3616-3622, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30996954

RESUMEN

C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.

8.
Inorg Chem ; 58(2): 1607-1620, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30624909

RESUMEN

We describe the synthesis and corresponding full characterization of the set of UiO-66 metal-organic frameworks (MOFs) with 1,4-benzenedicarboxylate (C6H4(COOH)2, hereafter H2BDC) and 1,4-naphthalenedicarboxylate (C10H6(COOH)2, hereafter H2NDC) mixed linkers with NDC contents of 0, 25, 50, and 100%. Their structural (powder X-ray diffraction, PXRD), adsorptive (N2, H2, and CO2), vibrational (IR/Raman), and thermal stability (thermogravimetric analysis, TGA) properties quantitatively correlate with the NDC content in the material. The UiO-66 phase topology is conserved at all relative fractions of BDC/NDC. The comparison between the synchrotron radiation PXRD and 77 K N2-adsorption isotherms obtained on the 50:50 BDC/NDC sample and on a mechanical mixture of the pure BDC and NDC samples univocally proves that in the mixed linkers of the MOFs the BDC and NDC linkers are shared in each MOF crystal, discarding the hypothesis of two independent phases, where each crystal contains only BDC or NDC linkers. The careful tuning of the NDC content opens a way for controlled alteration of the sorption properties of the resulting material as testified by the H2-adsorption experiments, showing that the relative ranking of the materials in H2 adsorption is different in different equilibrium-pressure ranges: at low pressures, 100NDC is the most efficient sample, while with increasing pressure, its relative performance progressively declines; at high pressures, the ranking follows the BDC content, reflecting the larger internal pore volume available in the MOFs with a higher fraction of smaller linkers. The H2-adsorption isotherms normalized by the sample Brunauer-Emmett-Teller specific surface area show, in the whole pressure range, that the surface-area-specific H2-adsorption capabilities in UiO-66 MOFs increase progressively with increasing NDC content. Density functional theory calculations, using the hybrid B3LYP exchange correlation functional and quadruple-ζ with four polarization functions (QZ4P) basis set, show that the interaction of H2 with the H2NDC linker results in an adsorption energy larger by about 15% with respect to that calculated for adsorption on the H2BDC linker.

9.
J Phys Chem Lett ; 9(6): 1324-1328, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29494162

RESUMEN

The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

10.
Chemphyschem ; 19(4): 484-495, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29250897

RESUMEN

Substituting metals for either aluminum or phosphorus in crystalline, microporous aluminophosphates creates Brønsted acid sites, which are well known to catalyze several key reactions, including the methanol to hydrocarbons (MTH) reaction. In this work, we synthesized a series of metal-substituted aluminophosphates with AFI topology that differed primarily in their acid strength and that spanned a predicted range from high Brønsted acidity (H-MgAlPO-5, H-CoAlPO-5, and H-ZnAlPO-5) to medium acidity (H-SAPO-5) and low acidity (H-TiAlPO-5 and H-ZrAlPO-5). The synthesis was aimed to produce materials with homogenous properties (e.g. morphology, crystallite size, acid-site density, and surface area) to isolate the influence of metal substitution. This was verified by extensive characterization. The materials were tested in the MTH reaction at 450 °C by using dimethyl ether (DME) as feed. A clear activity difference was found, for which the predicted stronger acids converted DME significantly faster than the medium and weak Brønsted acidic materials. Furthermore, the stronger Brønsted acids (Mg, Co and Zn) produced more light alkenes than the weaker acids. The weaker acids, especially H-SAPO-5, produced more aromatics and alkanes, which indicates that the relative rates of competing reactions change upon decreasing the acid strength.

11.
Chem Commun (Camb) ; 54(4): 389-392, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29243766

RESUMEN

The new porphyrin-based tetraphosphonic acid (Ni-H8TPPP) was employed in the synthesis of four isostructural MOFs of composition [M(Ni-H6TPPP)(H2O)], denoted CAU-29 (M = Mn, Co, Ni, Cd). Ni-CAU-29 was thoroughly characterized regarding its thermal and chemical stability as well as for proton conductivity.

12.
J Am Chem Soc ; 139(42): 14961-14975, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28945372

RESUMEN

Cu-exchanged zeolites possess active sites that are able to cleave the C-H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps. We find that the CuII moieties responsible for the conversion are formed in the presence of O2 and that high temperature together with prolonged activation time increases the population of such active sites. We evidence a linear correlation between the reducibility of the materials and their methanol productivity. By optimizing the process conditions and material composition, we are able to reach a methanol productivity as high as 0.2 mol CH3OH/mol Cu (125 µmol/g), the highest value reported to date for Cu-SSZ-13. Our results clearly demonstrate that high populations of 2Al Z2CuII sites in 6r, favored at low values of both Si:Al and Cu:Al ratios, inhibit the material performance by being inactive for the conversion. Z[CuIIOH] complexes, although shown to be inactive, are identified as the precursors to the methane-converting active sites. By critical examination of the reported catalytic and spectroscopic evidence, we propose different possible routes for active-site formation.

13.
Faraday Discuss ; 197: 421-446, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28186217

RESUMEN

Zeolites representing seven different topologies were subjected to life-time assessment studies as methanol to hydrocarbons (MTH) catalysts at 400 °C, P(MeOH) = 13 kPa and P(tot) = 100 kPa. The following topologies were studied: ZSM-22 (TON), ZSM-23 (MTT), IM-5 (IMF), ITQ-13 (ITH), ZSM-5 (MFI), mordenite (MOR) and beta (BEA). Two experimental approaches were used. In the first approach, each catalyst was tested at three different contact times, all giving 100% initial conversion. The life-time before conversion decreased to 50% at each contact time was measured and used to calculate critical contact times (i.e. the contact time needed to launch the autocatalytic MTH reaction) and deactivation rates. It was found that the critical contact time is strongly correlated with pore size: the smaller the pore size, the longer the critical contact time. The second experimental approach consisted of testing the catalysts in a double tube reactor with 100% initial conversion, and quenching the reaction after 4 consecutive times on stream, representing full, partial, and zero conversion. After quenching, the catalyst bed was divided into four segments, which were individually characterised for coke content (temperature-programmed oxidation) and specific surface area (N2 adsorption). The axial deactivation pattern was found to depend on pore size. With increasing pore size, the main source of coke formation changed from methanol conversion (1D 10-ring structures), to partly methanol, partly product conversion (3D 10-ring structures) and finally mainly product conversion (3D 12-ring structure). As a result, the methanol conversion capacity changed little with contact time for ZSM-5, while it increased with increasing contact time for the catalysts with smaller pore sizes, and decreased with increasing contact time for pore sizes larger than ZSM-5.

14.
ChemSusChem ; 9(7): 713-9, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26892915

RESUMEN

A cerium-based metal-organic framework with MOF-76 topology has been synthesized by a very simple and fast solvothermal method that has been tested for a one gram yield. Variable-temperature powder XRD and X-ray absorption data, analyzed by Rietveld and multiple-scattering extended X-ray absorption fine-structure methods, revealed high thermal stability and the presence of three different stable structures. X-ray absorption near-edge structure and FTIR spectroscopy probed the presence of cerium(III), which was characterized by coordinatively unsaturated sites that, however, played no major role in carbon dioxide adsorption. The material revealed excellent carbon dioxide adsorption properties: the highest gravimetric capacity of 15 wt% was observed at 1.1 bar in the case of the sample activated at 250 °C in vacuum, whereas the strongest interaction energy of 35 kJ mol(-1) was observed for the sample activated at 150 °C. Negligible nitrogen uptake of the sample activated at 150 °C indicates that this material is a promising candidate for nitrogen/carbon dioxide separation purposes.


Asunto(s)
Dióxido de Carbono/química , Cerio/química , Solventes/química , Adsorción , Difracción de Polvo , Espectroscopía de Absorción de Rayos X
15.
ChemSusChem ; 7(12): 3382-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25302675

RESUMEN

A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.


Asunto(s)
Aminas/química , Dióxido de Carbono/química , Metales/química , Compuestos Orgánicos/química , Adsorción , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier
16.
Inorg Chem ; 53(18): 9509-15, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25148242

RESUMEN

A series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.

17.
Phys Chem Chem Phys ; 15(32): 13363-70, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23873376

RESUMEN

Herein we report FTIR in situ adsorption of molecular hydrogen, carbon monoxide, water, methanol, pyridine and 2,4,6-trimethylpyridine (collidine) on nanosheet H-ZSM-5 which was recently studied in the methanol to hydrocarbons (MTH) reaction. The nature of the hydroxyl groups and surface species are described in detail. The IR spectrum of nanosheet H-ZSM-5 is dominated by silanols, which saturate the external surfaces. The acidity of Si(OH)Al is comparable to that observed in the case of standard microcrystalline H-ZSM-5. The study of the external surface allows the recognition of Si(OH)Al species located at the channel entrance, which are mostly all accessible to hindered molecules such as collidine.


Asunto(s)
Nanoestructuras/química , Zeolitas/química , Adsorción , Monóxido de Carbono/química , Hidrógeno/química , Metanol/química , Tamaño de la Partícula , Piridinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Agua/química
18.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): m73-4, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23424422

RESUMEN

In the title compound, [Cu(2)Cl(4)(C(12)H(8)N(2)O(4))(2)]·4C(3)H(7)NO, which contains a chloride-bridged centrosymmetric Cu(II) dimer, the Cu(II) atom is in a distorted square-pyramidal 4 + 1 coordination geometry defined by the N atoms of the chelating 2,2'-bipyridine ligand, a terminal chloride and two bridging chloride ligands. Of the two independent dimethyl-formamide mol-ecules, one is hydrogen bonded to a single -COOH group, while one links two adjacent -COOH groups via a strong accepted O-H⋯O and a weak donated C(O)-H⋯O hydrogen bond. Two of these last mol-ecules and the two -COOH groups form a centrosymmetric hydrogen-bonded ring in which the CH=O and the -COOH groups by disorder adopt two alternate orientations in a 0.44:0.56 ratio. These hydrogen bonds link the Cu(II) complex mol-ecules and the dimethyl-formamide solvent mol-ecules into infinite chains along [-111]. Slipped π-π stacking inter-actions between two centrosymmetric pyridine rings (centroid-centroid distance = 3.63 Å) contribute to the coherence of the structure along [0-11].

19.
Angew Chem Int Ed Engl ; 51(24): 5810-31, 2012 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-22511469

RESUMEN

Liquid hydrocarbon fuels play an essential part in the global energy chain, owing to their high energy density and easy transportability. Olefins play a similar role in the production of consumer goods. In a post-oil society, fuel and olefin production will rely on alternative carbon sources, such as biomass, coal, natural gas, and CO(2). The methanol-to-hydrocarbons (MTH) process is a key step in such routes, and can be tuned into production of gasoline-rich (methanol to gasoline; MTG) or olefin-rich (methanol to olefins; MTO) product mixtures by proper choice of catalyst and reaction conditions. This Review presents several commercial MTH projects that have recently been realized, and also fundamental research into the synthesis of microporous materials for the targeted variation of selectivity and lifetime of the catalysts.

20.
Phys Chem Chem Phys ; 14(5): 1614-26, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22187720

RESUMEN

The recently discovered UiO-66/67/68 class of isostructural metallorganic frameworks (MOFs) [J. H. Cavka et al. J. Am. Chem. Soc., 2008, 130, 13850] has attracted great interest because of its remarkable stability at high temperatures, high pressures and in the presence of different solvents, acids and bases [L. Valenzano et al. Chem. Mater., 2011, 23, 1700]. UiO-66 is obtained by connecting Zr(6)O(4)(OH)(4) inorganic cornerstones with 1,4-benzene-dicarboxylate (BDC) as linker resulting in a cubic MOF, which has already been successfully reproduced in several laboratories. Here we report the first complete structural, vibrational and electronic characterization of the isostructural UiO-67 material, obtained using the longer 4,4'-biphenyl-dicarboxylate (BPDC) linker, by combining laboratory XRPD, Zr K-edge EXAFS, TGA, FTIR, and UV-Vis studies. Comparison between experimental and periodic calculations performed at the B3LYP level of theory allows a full understanding of the structural, vibrational and electronic properties of the material. Both materials have been tested for molecular hydrogen storage at high pressures and at liquid nitrogen temperature. In this regard, the use of a longer ligand has a double benefit: (i) it reduces the density of the material and (ii) it increases the Langmuir surface area from 1281 to 2483 m(2) g(-1) and the micropore volume from 0.43 to 0.85 cm(3) g(-1). As a consequence, the H(2) uptake at 38 bar and 77 K increases from 2.4 mass% for UiO-66 up to 4.6 mass% for the new UiO-67 material. This value is among the highest values reported so far but is lower than those reported for MIL-101, IRMOF-20 and MOF-177 under similar pressure and temperature conditions (6.1, 6.2 and 7.0 mass%, respectively) [A. G. Wong-Foy et al. J. Am. Chem. Soc., 2006, 128, 3494; M. Dinca and J. R. Long. Angew. Chem., Int. Ed., 2008, 47, 6766]. Nevertheless the remarkable chemical and thermal stability of UiO-67 and the absence of Cr in its structure would make this material competitive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA