Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 342: 125918, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34555748

RESUMEN

Bacterial nanocellulose (BNC), which has tunable properties, is a precursor of nanostructured energy storage materials; however, the cost of BNC production is challenging. This study uses crude glycerol from the biodiesel industry as a carbon nutrient and first-time carbonised BNC from K. sucrofermentans that is applied in energy storage. From crude glycerol in static cultivation, 6.4 g L-1 BNC was produced with a high crystallinity index (85%) and tensile properties in comparison to conventionally used pure carbon substrates. Carbon materials were derived from the BNC retained fibrous and crystalline features with disordered porous structures. The electrochemical properties of the carbon materials have a specific capacitance of 140 F g-1. This study highlights the valorisation of waste glycerol from the biodiesel industry as a substrate for efficient BNC production and the energy storage potential of carbon derived from BNC as renewable energy materials.


Asunto(s)
Acetobacteraceae , Glicerol , Carbono , Celulosa
2.
ACS Appl Mater Interfaces ; 12(1): 518-526, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31808675

RESUMEN

Eutectic mixture (EM)-promoted MgO sorbents exhibit high CO2 sorption capacities but  experience a significant decrease in uptake after multiple sorption-regeneration cycles due to EM movement and redistribution at high temperatures. Encapsulation of a pseudoliquid, phase-changing EM promoter with MgO may thus prevent the loss of active interface by confining the EM within a fixed area inside a MgO shell. In this work, we successfully embedded an EM composed of KNO3 and LiNO3 in a MgO fiber matrix via core-shell electrospinning. The synthesized sorbent achieved relatively high and steady sorption capacities, maintaining a stable uptake of ∼20 wt % after 25 sorption-regeneration cycles. The sorbent was also characterized using various techniques including in situ transmission electron microscopy (TEM) to describe its morphology, from which it was confirmed that the eutectic salt existed in distributed hollow pockets within the MgO fiber matrix and stayed confined within these fixed areas, favorably limiting its movement and redistribution when exposed to high temperatures where it exists in the liquid form. The EM may also be described as a glue that holds the fiber together, while MgO acts as a protective shell that prevents structural changes and rearrangement caused by EM movement, allowing the sorbent to retain its cyclic stability after multiple cycles and demonstrating its potential for industrial use after further improvement. Thus, the microencapsulation of a phase-changing EM material with pure MgO metal oxide was successfully achieved and might be explored for various material applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA