Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36983842

RESUMEN

Bcl-2-associated anthanogene (BAG) family proteins regulate plant defense against biotic and abiotic stresses; however, the function and precise mechanism of action of each individual BAG protein are not yet clear. In this study, we investigated the biochemical and molecular functions of the Arabidopsis thaliana BAG2 (AtBAG2) protein, and elucidated its physiological role under stress conditions using mutant plants and transgenic yeast strains. The T-DNA insertion atbag2 mutant plants were highly susceptible to heat shock, whereas transgenic yeast strains ectopically expressing AtBAG2 exhibited outstanding thermotolerance. Moreover, a biochemical analysis of GST-fused recombinant proteins produced in bacteria revealed that AtBAG2 exhibits molecular chaperone activity, which could be attributed to its BAG domain. The relevance of the molecular chaperone function of AtBAG2 to the cellular heat stress response was confirmed using yeast transformants, and the experimental results showed that overexpression of the AtBAG2 sequence encoding only the BAG domain was sufficient to impart thermotolerance. Overall, these results suggest that the BAG domain-dependent molecular chaperone activity of AtBAG2 is indispensable for the heat stress response of Arabidopsis. This is the first report demonstrating the role of AtBAG2 as a sole molecular chaperone in Arabidopsis.

2.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639187

RESUMEN

Fenitrothion is an insecticide belonging to the organophosphate family of pesticides that is widely used around the world in agriculture and living environments. Today, it is one of the most hazardous chemicals that causes severe environmental pollution. However, detection of fenitrothion residues in the environment is considered a significant challenge due to the small molecule nature of the insecticide and lack of molecular recognition elements that can detect it with high specificity. We performed in vitro selection experiments using the SELEX process to isolate the DNA aptamers that can bind to fenitrothion. We found that newly discovered DNA aptamers have a strong ability to distinguish fenitrothion from other organophosphate insecticides (non-specific targets). Furthermore, we identified a fenitrothion-specific aptamer; FenA2, that can interact with Thioflavin T (ThT) to produce a label-free detection mode with a Kd of 33.57 nM (9.30 ppb) and LOD of 14 nM (3.88 ppb). Additionally, the FenA2 aptamer exhibited very low cross-reactivity with non-specific targets. This is the first report showing an aptamer sensor with a G4-quadruplex-like structure to detect fenitrothion. Moreover, these aptamers have the potential to be further developed into analytical tools for real-time detection of fenitrothion from a wide range of samples.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Brassica/metabolismo , Fenitrotión/análisis , Insecticidas/análisis , Extractos Vegetales/análisis , Técnica SELEX de Producción de Aptámeros/métodos , Brassica/efectos de los fármacos , Fenitrotión/toxicidad , Insecticidas/toxicidad
3.
Planta ; 247(6): 1439-1448, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29536220

RESUMEN

MAIN CONCLUSION: Under normal growth conditions, Arabidopsis VOZ1 interacts with DREB2C and acts as a transcriptional repressor by reducing DNA binding of DREB2C. Under heat stress conditions, VOZ1 is degraded by ubiquitination, and DREB2C, which is freed from VOZ1, functions as a transcription activator. To investigate the mechanism by which the DEHYDRATION-RESPONSIVE ELEMENT-BINDING FACTOR 2C (DREB2C)-dependent signaling cascade regulates heat stress (HS) responses, we performed a yeast two-hybrid screening using the DREB2C APETALA2 (AP2) DNA-binding domain as the bait against a cDNA library derived from Arabidopsis. We identified VASCULAR PLANT ONE-ZINC-FINGER 1 (VOZ1) and further verified positive VOZ1 colonies by repeating the X-α-Gal second screening and pull-down assay in vitro. Deletion analysis of VOZ1 demonstrated that the amino acid residues in its transcriptional regulatory, zinc finger and NAC domains are essential for the DREB2C-AP2 interaction. Although the HsfA3 promoter was strongly transactivated by DREB2C in Arabidopsis protoplasts, transient co-expression of VOZ1 (35S:VOZ1) with DREB2C (35S:DREB2C) in Arabidopsis protoplasts resulted in a significant decrease in the activity of GUS fused to the HsfA3 promoter (Prom HsfA3 :GUS), indicating that VOZ1 acts as a repressor of DREB2C. In electrophoretic mobility shift assays (EMSAs), the signal generated by binding of DREB2C to DRE gradually decreased with increasing VOZ1 level, providing evidence that the interaction of the DREB2C AP2 DNA-binding domain with DRE is blocked by VOZ1. Additionally, a voz1 voz2-2 double knockout mutant exhibited increased HS tolerance, likely due to the suppressive function of VOZs. Taken together, these results demonstrate that VOZ1 functions as a negative regulator of HS-inducible DREB2C signaling by blocking access to the AP2 DNA-binding domain of DREB2C.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Deshidratación , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas , Calor , Regiones Promotoras Genéticas/genética , Transducción de Señal , Termotolerancia , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
4.
Mol Cells ; 40(8): 577-586, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28756655

RESUMEN

Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the ß-glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of At-CYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Germinación , Respuesta al Choque Térmico , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/genética , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética , Plantones/efectos de los fármacos , Plantones/genética , Semillas/efectos de los fármacos , Semillas/genética , Transcripción Genética/efectos de los fármacos
5.
Mol Cells ; 39(6): 477-83, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27109422

RESUMEN

Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Unión al ADN/genética , Galactosiltransferasas/genética , Proteínas de Choque Térmico/genética , Estrés Oxidativo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Arabidopsis/genética , Dibromotimoquinona/metabolismo , Disacáridos/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción del Choque Térmico , Peróxido de Hidrógeno/farmacología , Plantas Modificadas Genéticamente/fisiología , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/fisiología , Activación Transcripcional
6.
Biochem Biophys Res Commun ; 452(1): 91-8, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25150152

RESUMEN

Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión al ADN/fisiología , Germinación , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
7.
Plant Cell Rep ; 33(12): 2015-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25163803

RESUMEN

KEY MESSAGE: ZAT11, a Zinc Finger of Arabidopsis Thaliana 11, is a dual-function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni (2+) tolerance. Zinc Finger of Arabidopsis Thaliana 11 (ZAT11) is a C2H2-type zinc finger protein that has been reported to function as an active transcriptional repressor. However, the biological function of ZAT11 remains unknown. Here we show that GFP-tagged ZAT11 is targeted to the nucleus. Analysis of plants expressing ZAT11 promoter-GUS showed that ZAT11 is highly expressed in roots and particularly in root tips. To identify the biological function of ZAT11, we constructed three independent lines of ZAT11 overexpressing transgenic plant (ZAT11 OE). ZAT11 OE enhanced the elongation of primary root but reduced the metal tolerance against nickel ion (Ni(2+)). The reduced Ni(2+) tolerance of ZAT11 OE was correlated with decreased accumulation of Ni(2+) in plants. The decreased accumulation of Ni(2+) in ZAT11 OE was caused by the reduced transcription of a vacuolar Ni(2+) transporter gene. Taken together, our results suggest that ZAT11 is a dual function transcriptional regulator that positively regulates primary root growth but negatively regulates Ni(2+) tolerance.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Níquel/toxicidad , Factores de Transcripción/metabolismo , Dedos de Zinc , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Transcripción/genética , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
8.
Plant Cell Rep ; 33(8): 1239-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24737413

RESUMEN

KEY MESSAGE: DREB2C acts as a transcriptional activator of the salt tolerance-related COLD - REGULATED 15A gene. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 2C (DREB2C) regulates plant responses to heat stress. We report here that DREB2C is induced by NaCl stress in Arabidopsis, based on quantitative RT-PCR analyses of transcript levels and DREB2C promoter-controlled GUS activity assays. Constitutive overexpression of DREB2C from the cauliflower mosaic virus (CaMV) 35S promoter led to enhanced salt tolerance in transgenic Arabidopsis and canola plants that was characterized by higher chlorophyll content, lower tissue Na(+) content, reduced rate of water loss, and tighter membrane integrity in plants grown in NaCl-containing medium. Basal expression of the stress-responsive genes COLD-REGULATED 15A (COR15A), RESPONSIVE TO DEHYDRATION (RD) 29A and RD29B, was higher in transgenic DREB2C-overexpressing Arabidopsis plants than in the wild-type. Promoter transactivation assays and electrophoretic mobility-shift assays showed that DREB2C interacts directly with the three DREs in the COR15A promoter, both in vivo and in vitro. Transgenic Arabidopsis constitutively overexpressing COR15A from the CaMV35S promoter exhibited greater NaCl tolerance than the untransformed wild-type. Taken together, the data suggest that DREB2C functions as transcriptional activator that promotes NaCl tolerance, in part through upregulation of the stress-responsive gene COR15A.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassica napus/fisiología , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Cloruro de Sodio/farmacología , Proteínas de Arabidopsis/metabolismo , Brassica napus/efectos de los fármacos , Brassica napus/genética , Clorofila/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Genes Reporteros , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN de Planta/genética , Estrés Fisiológico , Agua/análisis
9.
Transgenic Res ; 23(1): 109-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23868510

RESUMEN

Phytocystatins are proteinaceous inhibitors of cysteine proteases. They have been implicated in the regulation of plant protein turnover and in defense against pathogens and insects. Here, we have characterized an Arabidopsis phytocystatin family gene, Arabidopsis thaliana phytocystatin 4 (AtCYS4). AtCYS4 was induced by heat stress. The heat shock tolerance of AtCYS4-overexpressing transgenic plants was greater than that of wild-type and cys4 knock-down plants, as measured by fresh weight and root length. Although no heat shock elements were identified in the 5'-flanking region of the AtCYS4 gene, canonical ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs) were found. Transient promoter activity measurements showed that AtCYS4 expression was up-regulated in unstressed protoplasts by co-expression of DRE-binding factor 2s (DREB2s), especially by DREB2C, but not by bZIP transcription factors that bind to ABREs (ABFs, ABI5 and AREBs). DREB2C bound to and activated transcription from the two DREs on the AtCYS4 promoter although some preference was observed for the GCCGAC DRE element over the ACCGAC element. AtCYS4 transcript and protein levels were elevated in transgenic DREB2C overexpression lines with corresponding decline of endogenous cysteine peptidase activity. We propose that AtCYS4 functions in thermotolerance under the control of the DREB2C cascade.


Asunto(s)
Proteínas de Arabidopsis/genética , Cistatinas/genética , Proteínas de Unión al ADN/genética , Estrés Fisiológico/genética , Activación Transcripcional , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Cistatinas/metabolismo , Proteínas de Unión al ADN/biosíntesis , Regulación de la Expresión Génica de las Plantas , Golpe de Calor , Respuesta al Choque Térmico/genética , Regiones Promotoras Genéticas
10.
J Integr Plant Biol ; 54(9): 640-51, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22716647

RESUMEN

The dehydration-responsive element-binding factor 2C (DREB2C) is a member of the CBF/DREB subfamily of proteins, which contains a single APETALA2/Ethylene responsive element-binding factor (AP2/ERF) domain. To identify the expression pattern of the DREB2C gene, which contains multiple transcription cis-regulatory elements in its promoter, an approximately 1.4 kb upstream DREB2C sequence was fused to the ß-glucuronidase reporter gene (GUS) and the recombinant p1244 construct was transformed into Arabidopsis thaliana (L.) Heynh. The promoter of the gene directed prominent GUS activity in the vasculature in diverse young dividing tissues. Upon applying heat stress (HS), GUS staining was also enhanced in the vasculature of the growing tissues. Analysis of a series of 5'-deletions of the DREB2C promoter revealed that a proximal upstream sequence sufficient for the tissue-specific spatial and temporal induction of GUS expression by HS is localized in the promoter region between -204 and -34 bps relative to the transcriptional start site. Furthermore, electrophoretic mobility shift assay (EMSA) demonstrated that nuclear protein binding activities specific to a -120 to -32 bp promoter fragment increased after HS. These results indicate that the TATA-proximal region and some latent trans-acting factors may cooperate in HS-induced activation of the Arabidopsis DREB2C promoter.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Calor , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Estrés Fisiológico/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Emparejamiento Base/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Glucuronidasa/metabolismo , Respuesta al Choque Térmico/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia/genética , TATA Box/genética , Factores de Tiempo
11.
Biochem Biophys Res Commun ; 422(1): 181-6, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22575450

RESUMEN

Mitogen-activated protein kinases (MPKs) are involved in a number of signaling pathways that control plant development and stress tolerance via the phosphorylation of target molecules. However, so far only a limited number of target molecules have been identified. Here, we provide evidence that MYB41 represents a new target of MPK6. MYB41 interacts with MPK6 not only in vitro but also in planta. MYB41 was phosphorylated by recombinant MPK6 as well as by plant MPK6. Ser(251) in MYB41 was identified as the site phosphorylated by MPK6. The phosphorylation of MYB41 by MPK6 enhanced its DNA binding to the promoter of a LTP gene. Interestingly, transgenic plants over-expressing MYB41(WT) showed enhanced salt tolerance, whereas transgenic plants over-expressing MYB41(S251A) showed decreased salt tolerance during seed germination and initial root growth. These results indicate that the phosphorylation of MYB41 by MPK6 is required for the biological function of MYB41 in salt tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Serina/genética , Serina/metabolismo , Factores de Transcripción/genética
12.
Mol Cells ; 33(2): 135-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22286229

RESUMEN

Dehydration-responsive element-binding proteins (DREBs)regulate plant responses to environmental stresses. In the current study, transcription of DREB2C, a class 2 Arabidopsis DREB, was induced by a superoxide anion propagator, methyl viologen (MV). The oxidative stress tolerance of DREB2C-overexpressing transgenic plants was significantly greater than that of wild-type plants, as measured by ion leakage and chlorophyll fluorescence under light conditions. The transcriptional activity of several ascorbate peroxidase (APX) genes as well as APX protein activity was induced in DREB2C overexpressors. Additionally, the level of H2O2 in the overexpressors was lower than in wt plants under similar oxidative stress conditions. An electrophoretic mobility shift assay and transient activator reporter assay showed that APX2 expression was regulated by heat shock factor A3 (HsfA3) and that HsfA3 is regulated at the transcriptional level by DREB2C. These results suggest that DREB2C plays an important role in promoting oxidative stress tolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Estrés Oxidativo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Supervivencia Celular/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Herbicidas/farmacología , Peróxido de Hidrógeno/metabolismo , Paraquat/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Transgenes/genética
13.
Biochim Biophys Acta ; 1810(12): 1317-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21756975

RESUMEN

BACKGROUND: The C2 domain is a Ca(2+)/phospholipid-binding motif found in many proteins involved in signal transduction or membrane trafficking. OsERG3 is a homolog of OsERG1, a gene encoding a small C2-domain protein in rice. METHODS: OsERG3 Ca(2+)-binding and phospholipid-binding assays were carried out using (3)H-labeled phospholipid liposomes and a (45)Ca(2+) overlay assay, respectively. Cytosolic expression of OsERG3 was investigated by Western blot analysis and the OsERG3::smGFP transient expression assay. RESULTS: OsERG3 transcript levels were greatly enhanced by treatment with a fungal elicitor and Ca(2+)-ionophore. OsERG3 protein proved unable to interact with phospholipids regardless of the presence or absence of Ca(2+) ions. Nonetheless, OsERG3 displayed calcium-binding activity in an in vitro(45)Ca(2+)-binding assay, a property not observed with OsERG1. The cytosolic location of OsERG3 was not altered by the presence of fungal elicitor or Ca(2+)-ionophore. CONCLUSIONS: OsERG3 encodes a small C2-domain protein consisting of a single C2 domain. OsERG3 binds Ca(2+) ions but not phospholipids. OsERG3 is a cytosolic soluble protein. The OsERG3 gene may play a role in signaling pathway involving Ca(2+) ions. GENERAL SIGNIFICANCE: The data demonstrate that OsERG3 is an unusual small C2-domain protein containing a Ca(2+)-binding module but lacking phospholipid-binding properties.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Oryza/metabolismo , Fosfolípidos/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Transducción de Señal
14.
Biochem Biophys Res Commun ; 408(1): 78-83, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21458419

RESUMEN

Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. ß-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/µg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Semillas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Glucuronidasa/genética , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Iniciación de la Cadena Peptídica Traduccional , Plantas Modificadas Genéticamente/efectos de los fármacos , Proteómica
15.
Biochem Biophys Res Commun ; 401(2): 238-44, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20849812

RESUMEN

The dehydration-responsive element binding protein (DREB) family is important in regulating plant responses to abiotic stresses. DREB2C is one of the Arabidopsis class 2 DREBs and is induced by heat stress (HS). Here, we present data concerning the interaction of DREB2C with heat shock factor A3 (HsfA3) in the HS signal transduction cascade. RT-PCR showed that HsfA3 is the most up-regulated gene among the 21 Arabidopsis Hsfs in transgenic plants over-expressing DREB2C. DREB2C and HsfA3 displayed similar transcription patterns in response to HS and DREB2C specifically transactivated the DRE-dependent transcription of HsfA3 in Arabidopsis mesophyll protoplasts. Yeast one-hybrid assays and invitro electrophoretic mobility shift assays further showed that DREB2C interacts with two DREs located in the HsfA3 promoter with a binding preference for the distal DRE2. Deletion mutants of DREB2C indicated that transactivation activity was located in the C-terminal region. In addition, dual activator-reporter assays showed that the induction of heat shock protein (Hsp) genes in transgenic plants could be attributed to the transcriptional activity of HsfA3. Taken together, these results indicate that DREB2C and HsfA3 are key players in regulating the heat tolerance of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , Arabidopsis/genética , Factores de Transcripción del Choque Térmico , Técnicas del Sistema de Dos Híbridos
16.
Plant Cell Rep ; 29(11): 1297-304, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20820784

RESUMEN

Plants express many calmodulins (CaMs) and calmodulin-like (CML) proteins that sense and transduce different Ca(2+) signals. Previously, we reported divergent soybean (Glycine max) CaM isoforms (GmCaM4/5) with differential abilities to activate CaM-dependent enzymes. To elucidate biological functions of divergent CaM proteins, we isolated a cDNA encoding a CML protein, AtCML8, from Arabidopsis. AtCML8 shows highest identity with GmCaM4 at the protein sequence level. Expression of AtCML8 was high in roots, leaves, and flowers but low in stems. In addition, the expression of AtCML8 was induced by exposure to salicylic acid or NaCl. AtCML8 showed typical characteristics of CaM such as Ca(2+)-dependent electrophoretic mobility shift and Ca(2+) binding ability. In immunoblot analyses, AtCML8 was recognized only by antiserum against GmCaM4 but not by GmCaM1 antibodies. Interestingly, AtCML8 was able to activate phosphodiesterase (PDE) but did not activate NAD kinase. These results suggest that AtCML8 acts as a CML protein in Arabidopsis with characteristics similar to soybean divergent GmCaM4 at the biochemical levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Calmodulina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calmodulina/genética , ADN Complementario/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Salicílico/farmacología , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología
17.
Plant Cell Rep ; 29(8): 905-15, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20526604

RESUMEN

The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cistatinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cistatinas/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Calor , Datos de Secuencia Molecular , Familia de Multigenes , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , ARN de Planta/genética , Estrés Fisiológico
18.
BMB Rep ; 43(1): 9-16, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20132729

RESUMEN

The promoters of OsCaM1 and OsCaM3 were characterized after sequencing and fused to the reporter gene, GUS. The constructs were then transformed into the tobacco plant. Histochemical analysis of GUS showed different expression patterns in pOsCaM1::GUS and pOsCaM3:: GUS transgenic plants. The expression of pOsCaM1::GUS in 4- to 15-day-old seedlings in particular was observed only in the root, while the expression of pOsCaM3::GUS was detected in both the cotyledons and root. Also, pRCaM1::GUS was detected in all the tissues surrounding the root system, while the presence of pOsCaM3::GUS was observed in the root, except in the root meristem. However, in mature transgenic plants, the expression of pOsCaM1::GUS and OsRCaM3::GUS was scarcely detected. Under wounding stress, the GUS activity of pOsCaM1 and pOsCaM3 was strongly induced, and the activity of pOsCaM3 especially, was retained for long periods. In the phloem, pOsCaM3 activity induced by hormone treatments and abiotic stresses was also identified. [BMB reports 2010; 43(1): 9-16].


Asunto(s)
Calmodulina/genética , Nicotiana/genética , Oryza/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Calmodulina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Datos de Secuencia Molecular , Oryza/metabolismo , Floema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/metabolismo
19.
Physiol Plant ; 138(2): 191-204, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20053182

RESUMEN

Many plant hormones are involved in coordinating the growth responses of plants under stress. However, not many mechanistic studies have explored how plants maintain the balance between growth and stress responses. Brassinosteroids (BRs), plant-specific steroid hormones, affect many aspects of plant growth and development over a plant's lifetime. In this study we determined that exogenous treatment of BR helped the plant overcome the cold condition only when pretreated with less than 1 nM, and the brassinosteroid-insensitive 1 (bri1) mutation, which results in defective BR signaling and subsequent dwarfism, generates an increased tolerance to cold. In contrast, BRI1-overexpressing plants were more sensitive to the same stress than wild-type. We found that the bri1 mutant and BRI1-overexpressing transgenic plants contain higher basal level of expression of CBFs/DREB1s than wild-type. However, representative cold stress-related genes were regulated with the same pattern to cold in wild-type, bri1-9 and BRI1 overexpressing plants. To examine the global gene expression and compare the genes that show differential expression pattern in bri1-9 and BRI1-GFP plants other than CBFs/DREB1s, we analyzed differential mRNA expression using the cDNA microarray analysis in the absence of stress. Endogenous expression of both stress-inducible genes as well as genes encoding transcription factors that drive the expression of stress-inducible genes were maintained at higher levels in bri1-9 than either in wild-type or in BRI1 overexpressing plants. This suggests that the bri1-9 mutant could always be alert to stresses that might be exerted at any times by constitutive activation of subsets of defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Frío , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Quinasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/genética , Transducción de Señal
20.
J Plant Physiol ; 167(3): 161-8, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19853963

RESUMEN

Cadmium (Cd) is a non-essential heavy metal that is recognized as a major environmental pollutant. While Cd responses and toxicities in some plant species have been well established, there are few reports about the effects of short-term exposure to Cd on rice, a model monocotyledonous plant, at the proteome level. To investigate the effect of Cd in rice, we monitored the influence of Cd exposure on root and leaf proteomes. After Cd treatment, root and leaf tissues were separately collected and leaf proteins were fractionated with polyethylene glycol. Differentially regulated proteins were selected after image analysis and identified using MALDI-TOF MS. A total of 36 proteins were up- or down-regulated following Cd treatment. As expected, total glutathione levels were significantly decreased in Cd-treated roots, and approximately half of the up-regulated proteins in roots were involved in responses to oxidative stress. These results suggested that prompt antioxidative responses might be necessary for the reduction of Cd-induced oxidative stress in roots but not in leaves. In addition, RNA gel blot analysis showed that the proteins identified in the proteomic analysis were also differentially regulated at the transcriptional level. Collectively, our study provides insights into the integrated molecular mechanisms of early responses to Cd in rice.


Asunto(s)
Cadmio/metabolismo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Proteómica , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Metabolismo de los Hidratos de Carbono , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Estrés Oxidativo , Fotosíntesis , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...