Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120954

RESUMEN

BACKGROUND: In response to severe kidney injury, the kidney epithelium displays remarkable regenerative capabilities driven by adaptable resident epithelial cells. To date, it has been widely considered that the adult kidney lacks multipotent stem cells; thus, the cellular lineages responsible for repairing proximal tubule damage are incompletely understood. Leucine-rich repeats and immunoglobulin-like domains protein 1-expressing cells (Lrig1+ cells) have been identified as a long-lived cell in various tissues that can induce epithelial tissue repair. Therefore, we hypothesized that Lrig1+ cells participate in kidney development and tissue regeneration. METHODS: We investigated the role of Lrig1+ cells in kidney injury using mouse models. The localization of Lrig1+ cells in the kidney was examined throughout mouse development. The function of Lrig1+ progeny cells in acute kidney injury repair was examined in vivo using a tamoxifen-inducible Lrig1-specific Cre recombinase-based lineage tracing in three different kidney injury mouse models. Additionally, we conducted single-cell RNA-sequencing to characterize the transcriptional signature of Lrig1+ cells and to trace their progeny. RESULTS: Lrig1+ cells were present during kidney development and contributed to formation of the proximal tubule and collecting duct structures in mature mouse kidneys. In three-dimensional culture, single Lrig1+ cells demonstrated long-lasting propagation and differentiated into the proximal tubule and collecting duct lineages. These Lrig1+ proximal tubule cells highly expressed progenitor-like and quiescence-related genes, giving rise to a novel cluster of cells with regenerative potential in adult kidneys. Moreover, these long-lived Lrig1+ cells expanded and repaired damaged proximal tubules in response to three types of acute kidney injury in mice. CONCLUSIONS: These findings highlight the critical role of Lrig1+ cells in kidney regeneration.

2.
Antioxidants (Basel) ; 13(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39061944

RESUMEN

Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics.

3.
J Pharm Policy Pract ; 17(1): 2354299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845625

RESUMEN

Introduction: In this study, we aimed to comparatively analyse the indicators of availability to orphan drugs in South Korea, the United States of America, Europe Union, and Japan. Methods: For 169 drugs designated as orphan drugs in South Korea between 2012 and 2021, information on the drugs designated as orphan drugs from each jurisdiction was extracted by country. Then, the availability indicators (approval time, drug lag time, and designation gap) were analysed for the drugs approved in each jurisdiction. Results: The approval rate of drugs designated as orphan drugs were 11.22% and 6.31% in the USA and EU, respectively, which was lower than that of orphan drugs in South Korea and Japan. The highest number of approved drugs was in the USA (87 drugs), EU 27 drugs, Japan 22 drugs and Korea 21 drugs. Furthermore, the approval time significantly differed between South Korea and the other countries. South Korea had a significantly different drug lag time and designation gap compared with the USA and EU. Conclusion: Our findings show that to fundamentally improve the access to treatments for rare disease, a policy of regulatory science that can comprehensively support the early stages of research and development and commercialisation is needed.

4.
Toxicol Res ; 40(3): 421-429, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911536

RESUMEN

Dodecamethylcyclohexasiloxane (D6) is a siloxane substance mainly used in cosmetics and personal care products. While octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) were once commonly used in personal care products, their usage has been restricted due to the classification as persistent, bioaccumulative, and toxic (PBT)/very persistent and very bio-accumulative (vPvB) substances. While D6 has emerged as a substitute for D4 and D5, the risk assessment for D6 remains limited compared to the evaluations for D4 and D5. To address this gap, we conducted a comprehensive risk assessment of D6. In this study, we reviewed the toxicity information on D6 and calculated the exposure level to D6, considering the content of D6 in cosmetic products. No observed adverse effect level (NOAEL) of 1500 mg/kg bw/day was established in a repeated dose toxicity study after oral administration to rats. Negative results were found in tests on the ocular and skin irritation, skin sensitization, and genotoxicity of D6. According to the product content of up to 48% of D6 reported in 2012, the Systemic Exposure Dose (SED) was 5.4E-06 to 7.04 mg/kg bw/day for a 60 kg adult using the exposure factors from Korean cosmetic usage. The Margin of Safety was estimated to be between 35.5 and 4.63E+07, posing a potential health risk of D6 according to the maximum concentration and the product type. Further consideration of the potential of D6 as PBT or vPvB is also required.

5.
Toxicol Res ; 40(3): 487-497, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911535

RESUMEN

Phthalates are extensively employed plasticizers crucial for conferring flexibility and plasticity to polyvinyl chloride. Phthalates, including DEHP (di(2-ethylhexyl)phthalate), present in diverse products, have been identified in fine dust and are capable of infiltrating the body, potentially posing health hazards. Importantly, melanocytes, existing at the basal layer of the epidermis, are susceptible to toxic substances. In our study, we employed the 3D human pigmented epidermis model, MelanoDerm™, along with the B16F10 murine melanoma cell line, to examine the influence of DEHP exposure on melanocytes. The exposure to low concentrations of DEHP (~ 5 µM), resulted in the extension of melanocyte dendrites, indicating the stimulation of melanocytes. Analysis of gene expression and protein profiles unveiled the up-regulation of MITF, Arpc2, and TRP1 genes subsequent to DEHP exposure, indicating alterations in cytoskeletal and melanosome-related genetic and protein components in melanocytes. Notably, increased pigmentation was observed in MelanoDerm™ following DEHP exposure. DEHP-stimulated reactive oxygen species generation appeared to be involved in these events since the antioxidant, ascorbic acid attenuated ROS generation and MITF upregulation. Collectively, our study demonstrated that DEHP exposure can induce cytoskeletal disturbance and skin pigmentation through oxidative stress.

6.
Ecotoxicol Environ Saf ; 281: 116637, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941663

RESUMEN

Airborne particulate matter (PM) is a global environmental risk factor threatening human health and is a major cause of cardiovascular and respiratory disease-associated death. Current studies on PM exposure have been limited to large-scale cohort and epidemiological investigations, emphasizing the need for detailed individual-level studies to uncover specific differentially expressed genes and their associated signaling mechanisms. Herein, we revealed that PM exposure significantly upregulated inflammatory and immune responses, such as cytokine-mediated signaling pathways, complement system, and the activation and migration of immune cells in gene set enrichment analysis of our RNA sequencing (RNAseq) data. Remarkably, we discovered that the broad gene expression and signaling pathways mediated by macrophages were predominantly expressed in the respiratory system following PM exposure. Consistent with these observations, individual PMs, classified by aerodynamic size and origin, significantly promoted macrophage recruitment to the lungs in the mouse lung inflammation model. Additionally, we confirmed that RNAseq observations from the respiratory system were reproduced in murine bone marrow-derived macrophages and the alveolar macrophage cell line MH-S after individual PM exposure. Our findings demonstrated that PM exposure augmented broad inflammatory and immune responses in the respiratory system and suggested the reinforcement of global strategies for reducing particulate air pollution to prevent respiratory diseases and their exacerbation.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Transducción de Señal , Material Particulado/toxicidad , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Ratones Endogámicos C57BL , Sistema Respiratorio/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos
7.
Regul Toxicol Pharmacol ; 149: 105620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615840

RESUMEN

Botanical extracts, widely used in cosmetics, pose a challenge to safety assessment due to their complex compositions. The threshold of toxicological concern (TTC) approach, offering a safe exposure level for cosmetic ingredients, proves to be a promising solution for ensuring the safety of cosmetic ingredients with low exposure level. We assessed the safety of Paeonia lactiflora root extract (PLR), commonly used in skin conditioning products, with the TTC. We identified 50 constituents of PLR extract from the USDA database and literature exploration. Concentration of each constituent of PLR extract was determined with the information from USDA references, literature, and experimental analysis. The genotoxicity of PLR and its constituents was assessed in vitro and in silico respectively. Cramer class of the constituents of the PLR extract was determined with Toxtree 3.1 extended decision tree using ChemTunes®. Systemic exposure of each constituent from leave-on type cosmetic products containing PLR at a 1% concentration was estimated and compared with respective TTC threshold. Two constituents exceeding TTC threshold were further analyzed for dermal absorption using in silico tools, which confirmed the safety of PLR extract in cosmetics. Collectively, we demonstrated that the TTC is a useful tool for assessing botanical extract safety in cosmetics.


Asunto(s)
Cosméticos , Paeonia , Extractos Vegetales , Raíces de Plantas , Paeonia/química , Extractos Vegetales/toxicidad , Cosméticos/toxicidad , Raíces de Plantas/química , Medición de Riesgo , Humanos , Animales , Seguridad de Productos para el Consumidor , Absorción Cutánea , Nivel sin Efectos Adversos Observados
8.
Toxics ; 12(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38393248

RESUMEN

Natural language processing (NLP) technology has recently used to predict substance properties based on their Simplified Molecular-Input Line-Entry System (SMILES). We aimed to develop a model predicting human skin sensitizers by integrating text features derived from SMILES with in vitro test outcomes. The dataset on SMILES, physicochemical properties, in vitro tests (DPRA, KeratinoSensTM, h-CLAT, and SENS-IS assays), and human potency categories for 122 substances sourced from the Cosmetics Europe database. The ChemBERTa model was employed to analyze the SMILES of substances. The last hidden layer embedding of ChemBERTa was tested with other features. Given the modest dataset size, we trained five XGBoost models using subsets of the training data, and subsequently employed bagging to create the final model. Notably, the features computed from SMILES played a pivotal role in the model for distinguishing sensitizers and non-sensitizers. The final model demonstrated a classification accuracy of 80% and an AUC-ROC of 0.82, effectively discriminating sensitizers from non-sensitizers. Furthermore, the model exhibited an accuracy of 82% and an AUC-ROC of 0.82 in classifying strong and weak sensitizers. In summary, we demonstrated that the integration of NLP of SMILES with in vitro test results can enhance the prediction of health hazard associated with chemicals.

9.
Biomol Ther (Seoul) ; 32(2): 231-239, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296651

RESUMEN

Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in Melanoderm™. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.

10.
Animals (Basel) ; 14(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254451

RESUMEN

Canine atopic dermatitis (CAD) is a genetically predisposed inflammatory pruritic skin disease. The available treatments for CAD have several adverse effects and vary in efficacy, indicating the need for the development of improved treatments. In this study, we aimed to elucidate the therapeutic effects of allogeneic and xenogeneic exosomes on CAD. Six laboratory beagle dogs with CAD were randomly assigned to three treatment groups: control, canine exosome (cExos), or human exosome (hExos) groups. Dogs in the cExos and hExos groups were intravenously administered 1.5 mL of cExos (5 × 1010) and hExos (7.5 × 1011) solutions, respectively, while those in the control group were administered 1.5 mL of normal saline three times per week for 4 weeks. Skin lesion score and transepidermal water loss decreased in cExos and hExos groups compared with those in the control group. The exosome treatments decreased the serum levels of inflammatory cytokines (interferon-γ, interleukin-2, interleukin-4, interleukin-12, interleukin-13, and interleukin-31) but increased those of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß), indicating the immunomodulatory effect of exosomes. Skin microbiome analysis revealed that the exosome treatments alleviated skin bacterial dysbiosis. These results suggest that allogeneic and xenogeneic exosome therapy may alleviate CAD in dogs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA