Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(38): 45354-45366, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702662

RESUMEN

The present work aims to predict the degradation in the performance of a solid oxide fuel cell (SOFC) cathode owing to cation interdiffusion between the electrolyte and cathode and surface segregation. Cation migration in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-x (LSCF)-Gd0.10Ce0.90O1.95 (GDC) composite cathode is evaluated in relation to time up to 1000 h using scanning transmission electron microscopy (STEM)-energy-dispersive X-ray spectroscopy (EDXS). The resulting insulating phase formed within the GDC interlayer is quantified by means of the volume fraction using a two-dimensional (2D) image analysis technique. For the very first time, the amount of the insulating phase in the GDC interlayer is quantified, and the corresponding performance degradation of the LSCF cathode is predicted. Mathematical relationships are established for the estimation of degradation due to surface segregation of the cathode. The ohmic resistance between the cathode and the GDC interlayer/electrolyte interface and the polarization resistance of the cathode, characterized by electrochemical impedance spectroscopy (EIS), show an excellent match with the predicted results. The combined degradation analysis and modeling for the cathode lifetime prediction provide a systematic understanding of the time-dependent cation migration and segregation behavior.

2.
RSC Adv ; 13(36): 25029-25053, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37614791

RESUMEN

Solid oxide fuel cells (SOFCs) are highly efficient, low-emission, and fuel-flexible energy conversion devices. However, their commercialization has lagged due to the lack of long-term durability. Among several performance degradation mechanisms, cathode degradation and elemental inter-diffusion of the electrolyte and cathode has been identified as the predominant factors. In the most common SOFC systems, a cobalt-based perovskite material is used, for example LSC or LSCF. These cobalt-based materials offer mixed conductivity and higher concentration of oxygen vacancies as compared to LSM at lower operating temperature leading to favorable reduction kinetics. However, the presence of cobalt results in higher cost, higher thermal expansion co-efficient (TEC) mismatch and most importantly leads to rapid degradation. Various elements like strontium, cobalt, cerium, chromium, or zirconium accumulate or deposit at the electrode-electrolyte interface, which results in sluggish reaction kinetics of the oxygen reduction reaction (ORR). These elements react to form secondary phases that have lower ionic and electronic conductivity, cover active reaction sites, and eventually lead to cell and system deterioration. Over the past decade, several studies have focused on preventative and protective measures to prolong SOFC lifetime which includes novel fabrication techniques, introduction of new layers, addition of thin films to block the cation transport. Such efforts to prevent the formation of insulating phases and decomposition of the cathode have resulted in a remarkable improvement in long-term stability. In this review paper, current research on leading mechanisms responsible for the degradation of cobaltite cathode of solid oxide fuel cell has been summarized and durability improvement strategies of cobalt-based SOFC cathodes have been discussed.

3.
Dalton Trans ; 52(7): 1885-1894, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36723214

RESUMEN

Since the high configurational entropy-driven structural stability of multicomponent oxide system was proposed Rost et al. in 2015, many experiments and simulations have been done to develop new multicomponent oxides. Although many notable findings have shown unique physical and chemical properties, high configurational entropy oxide systems that have more than 3 distinct cation sites are yet to be developed. By utilizing atomic-scale direct imaging with scanning transmission electron microscopy and AC-impedance spectroscopy analysis, we demonstrated for the first time that a multicomponent equimolar proton-conducting quadruple hexagonal perovskite-related Ba5RE2Al2ZrO13 (RE = rare earth elements) oxide system can be synthesized even when adding eight different rare earth elements. In particular, as the number of added elements was increased, i.e., as the configurational entropy was increased, we confirmed that the chemical stability toward CO2 was improved without a significant decrement of the proton conductivity. The findings in this work broaden the use of the crystal structure to which the multicomponent model can be applied, and a systematic study on the correlation between the configurational entropy and proton conductivity and/or chemical stability is noteworthy.

4.
ACS Appl Mater Interfaces ; 12(5): 5730-5738, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31918549

RESUMEN

Cr poisoning of cathode materials is one of the main degradation issues hampering the operation of solid oxide fuel cells (SOFCs). To overcome this shortcoming, LaNi0.6Fe0.4O3-δ (LNF) has been developed as an alternative cathode material owing to its superior chemical stability in Cr environments. In this study, we develop a hybrid electrochemical deposition technique to fabricate a nanostructured LNF-gadolinium-doped ceria (GDC) (n-LNF-GDC) cathode with enhanced active reaction sites for the oxygen reduction reaction. For this purpose, Fe and Ni cations are co-deposited onto an electrically conductive carbon nanotube-modified GDC backbone by electroplating, whereas La cations are successively deposited through a chemically assisted electrodeposition method. The proposed method involves a low-temperature (900 °C) calcination step of electrodeposited cations, which avoids the need of fabricating a GDC diffusion barrier layer which is otherwise needed to avoid the formation of insulating phases (e.g., La2Zr2O7) when fabricating by conventional high-temperature (≥1000 °C) sintering. Scanning electron microscopy images reveal a unique nanofibrous structure of n-LNF-GDC, which is believed to play an instrumental role in enhancing the electrochemical characteristics by increasing the active triple-phase boundaries. An anode-supported SOFC with the n-LNF-GDC cathode showed the superior performance of 0.984 W cm-2 at an intermediate temperature of 750 °C as compared to the power densities of 0.495 and 0.874 W cm-2 produced by LNF-GDC and state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC composite cathodes fabricated by conventional sintering. A short-term accelerated Cr-poisoning durability test indicated good electrochemical stability of n-LNF-GDC, whereas LSCF exhibited severe degradation. The electrochemically engineered nanostructured n-LNF-GDC can serve as an effective cathode for SOFCs to achieve high performance and long-term durability.

5.
ChemSusChem ; 11(15): 2620-2627, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29808966

RESUMEN

State-of-the-art cathodes for solid oxide fuel cells (SOFCs), such as (La,Sr)MnO3 -(Y2 O3 )0.08 (ZrO2 )0.92 (LSM-YSZ), suffer from sluggish oxygen reduction reaction (ORR) kinetics at reduced temperatures, leading to a significant decline in their performance. Herein, we report a tailored SOFC cathode with high ORR activity at intermediate temperatures using a simple but effective approach based on "electrochemical" surface modification. The proposed process involves chemically assisted electrodeposition (CAED) of a metal hydroxide (LaCo(OH)x ) on LSM-YSZ surfaces followed by in situ thermal conversion of LaCo(OH)x to perovskite-type LaCoO3 (LCO) nanoparticles during the SOFC startup. This method facilitates easy loading of the LCO nanoparticles with a precisely controlled morphology without the need for repeated deposition/annealing processes. An anode-supported SOFC with the LCO-tailored LSM-YSZ electrode exhibits a remarkably increased power density, approximately 180 % at 700 °C, compared with an SOFC with the pristine electrode as well as excellent long-term stability, which are attributed to the beneficial role of the CAED-derived LCO nanoparticles in enlarging the active areas for ORR and promoting oxygen adsorption/diffusion. This work demonstrates that controlled surface tailoring of the cathode by CAED could be an effective approach for improving the performance of SOFCs at reduced temperatures.

6.
J Nanosci Nanotechnol ; 14(10): 7668-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25942845

RESUMEN

An anode-supported flat-tubular solid oxide fuel cell is an advanced cell design, which offers many advantages including a high volumetric power density, a minimized sealing area and a high resistance to thermal cycling. Infiltration of nano-sized noble metal catalysts into a porous cathode is known to be an effective method to improve cathode performances at reduced temperatures, but the cathode stability is of potential concern. This study addresses the performance and durability of anode-supported flat-tubular solid oxide fuel cells with Ag-infiltrated cathodes. Uniformly dispersed Ag nanoparticles on the cathode are formed via a wet infiltration technique combined with subsequent heat-treatment. Although the Ag infiltration results in improved cell performance, the durability tests indicate that the cell performance degrades over time and that the degradation rate increases with increasing Ag loading in the cathode. The observed performance degradation is mainly attributed to formation of large-scale Ag agglomerates. A strategy based on an inter-dispersed composite of Ag and CeO2 nanoparticles is proposed to mitigate the performance degradation.


Asunto(s)
Cerio/química , Suministros de Energía Eléctrica , Plata/química , Electrodos , Nanopartículas del Metal/química , Temperatura , Factores de Tiempo
7.
Chem Commun (Camb) ; 49(53): 5984-6, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23715057

RESUMEN

Carbon-free cobalt oxide cathodes for lithium-oxygen batteries are fabricated via an electrodeposition-conversion process. The Co3O4-only cathodes show a remarkably reduced voltage gap (by ca. 550 mV compared to the carbon-only cathode) as well as excellent long-term cyclability.

8.
Chemosphere ; 60(8): 1162-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15993166

RESUMEN

The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.


Asunto(s)
Titanio/química , Tricloroetileno/aislamiento & purificación , Rayos Ultravioleta , Contaminantes Químicos del Agua/aislamiento & purificación , Catálisis , Fotoquímica , Titanio/análisis , Tricloroetileno/química , Tricloroetileno/efectos de la radiación , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/efectos de la radiación , Purificación del Agua/métodos
9.
Chemosphere ; 54(3): 305-12, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14575743

RESUMEN

The effects of trichloroethylene (TCE) gas flow rate, relative humidity, TiO(2) film thickness, and UV light intensity on photodegradation of TCE have been determined in an annular flow type photoreactor. Phosgene and dichloroacetyl chloride formation could be controlled as a function of TCE gas flow rate and photodegradation of TCE decreased with increasing relative humidity. The optimum thickness of TiO(2) film was found to be approximately 5 mum and the photocatalytic reaction rate of TCE increased with square root of UV light intensity. In addition, the effects of the initial TCE concentration, phase holdup ratio of gas and solid phases (epsilon(g)/epsilon(s)), CuO loading on the photodegradation of TCE have been determined in an annulus fluidized bed photoreactor. The TCE photodegradation decreased with increasing the initial TCE concentration. The optimum conditions of the phase holdup ratio (epsilon(g)/epsilon(s)) and CuO wt.% for the maximum photodegradation of TCE was found to be 2.1 and 1.1 wt.%, respectively. Therefore, an annulus fluidized bed photoreactor is an effective tool for TCE degradation over TiO(2)/silica gel with efficient utilization of photon energy.


Asunto(s)
Contaminación del Aire/prevención & control , Tricloroetileno/química , Rayos Ultravioleta , Catálisis , Humedad , Cinética , Espectrometría de Masas , Factores de Tiempo , Titanio , Tricloroetileno/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...