Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Tissue Eng Part C Methods ; 29(6): 276-283, 2023 06.
Article En | MEDLINE | ID: mdl-37233718

Owing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (µCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies. However, the presence of metal artifacts dramatically hinders the accuracy of µCT analysis of new bone formation. To acquire reliable and accurate µCT results that reflect new bone formation in vivo, it is crucial to lessen the impact of metal artifacts. Herein, an optimized procedure for calibrating µCT parameters using histological data was developed. In this study, the porous titanium scaffolds were fabricated by powder bed fusion based on computer-aided design. These scaffolds were implanted in femur defects created in New Zealand rabbits. After 8 weeks, tissue samples were collected to assess new bone formation using µCT analysis. Resin-embedded tissue sections were then used for further histological analysis. A series of deartifact two-dimensional (2D) µCT images were obtained by setting the erosion radius and the dilation radius in the µCT analysis software (CTan) separately. To get the µCT results closer to the real value, the 2D µCT images and corresponding parameters were subsequently selected by matching the histological images in the particular region. After applying the optimized parameters, more accurate 3D images and more realistic statistical data were obtained. The results demonstrate that the newly established method of adjusting µCT parameters can effectively reduce the influence of metal artifacts on data analysis to some extent. For further validation, other metal materials should be analyzed using the process established in this study.


Bone and Bones , Titanium , Animals , Rabbits , X-Ray Microtomography , Titanium/pharmacology , Prostheses and Implants , Femur , Tissue Scaffolds , Porosity
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article En | MEDLINE | ID: mdl-36902078

Matrix metalloproteinase-12 (MMP12), or macrophage metalloelastase, plays important roles in extracellular matrix (ECM) component degradation. Recent reports show MMP12 has been implicated in the pathogenesis of periodontal diseases. To date, this review represents the latest comprehensive overview of MMP12 in various oral diseases, such as periodontitis, temporomandibular joint dysfunction (TMD), orthodontic tooth movement (OTM), and oral squamous cell carcinoma (OSCC). Furthermore, the current knowledge regarding the distribution of MMP12 in different tissues is also illustrated in this review. Studies have implicated the association of MMP12 expression with the pathogenesis of several representative oral diseases, including periodontitis, TMD, OSCC, OTM, and bone remodelling. Although there may be a potential role of MMP12 in oral diseases, the exact pathophysiological role of MMP12 remains to be elucidated. Understanding the cellular and molecular biology of MMP12 is essential, as MMP12 could be a potential target for developing therapeutic strategies targeting inflammatory and immunologically related oral diseases.


Matrix Metalloproteinase 12 , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/enzymology , Matrix Metalloproteinase 12/metabolism , Mouth Neoplasms/enzymology , Periodontitis/pathology
3.
Front Med (Lausanne) ; 7: 580796, 2020.
Article En | MEDLINE | ID: mdl-33363183

Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly transfers from human to human via respiratory and gastrointestinal routes. The S-glycoprotein in the virus is the key factor for the entry of SARS-CoV-2 into the cell, which contains two functional domains: S1 is an angiotensin-converting enzyme 2 (ACE2) receptor binding domain, and S2 is necessary for fusion of the coronavirus and cell membranes. Moreover, it has been reported that ACE2 is likely to be the receptor for SARS-CoV-2. In addition, mRNA level expression of Furin enzyme and ACE2 receptor had been reported in airway epithelia, cardiac tissue, and enteric canals. However, the expression patterns of ACE2 and Furin in different cell types of oral tissues are still unclear. Methods: In order to investigate the potential infective channel of the new coronavirus via the oropharyngeal cavity, we analyze the expression of ACE2 and Furin in human oral mucosa using the public single-cell sequence datasets. Furthermore, immunohistochemistry was performed in mucosal tissue from different oral anatomical sites to confirm the expression of ACE2 and Furin at the protein level. Results: The bioinformatics results indicated the differential expression of ACE2 and Furin on epithelial cells from different oral anatomical sites. Immunohistochemistry results revealed that both the ACE2-positive and Furin-positive cells in the target tissues were mainly positioned in the epithelial layers, partly expressed in fibroblasts, further confirming the bioinformatics results. Conclusions: Based on these findings, we speculated that SARS-CoV-2 could invade oral mucosal cells through two possible routes: binding to the ACE2 receptor and fusion with cell membrane activated by Furin protease. Our results indicated that oral mucosa tissues are susceptible to SARS-CoV-2 that could facilitate COVID-19 infection via respiratory and fecal-oral routes.

4.
BMC Oral Health ; 20(1): 250, 2020 09 07.
Article En | MEDLINE | ID: mdl-32894117

BACKGROUND: This study aims to compare the percentage of dentin removed, instrumentation efficacy, root canal filling and load at fracture between contracted endodontic cavities, and traditional endodontic cavities on root canal therapy in premolars. METHODS: Forty extracted intact human first premolars were imaged with micro-CT and randomly assigned to the contracted endodontic cavity (CEC) or traditional endodontic cavity (TEC) groups. CEC was prepared with the aid of a 3D-printed template, canals were prepared with a 0.04 taper M-Two rotary instrument, and cavities were restored with resin. Specimens were loaded to fracture in an Instron Universal Testing Machine after a fatigue phase. The data were analyzed by the independent samples T test and Mann-Whitney U test, appropriate post hoc tests. RESULTS: In the premolars tested in vitro, the percentage of dentin removed in the premolars with two dental roots in the CEC group (3.85% ± 0.42%) was significantly smaller (P < 0.05) than in the TEC group (4.94% ± 0.5%). The untouched canal wall (UCW) after instrumentation for TECs (16.43% ± 6.56%) was significantly lower (P < .05) than the UCW (24.42% ± 9.19%) for CECs in single-rooted premolars. No significant differences were observed in the increased canal volume and surface areas in premolars between the TEC and CEC groups (P > 0.05). CECs conserved coronal dentin in premolars with two dental roots but no impact on the instrument efficacy. There were no differences between the CEC groups and the TEC groups in the percentage of filling material and voids (P > 0.05). In addition, the mean load at failure of premolars did not significantly differ between the CEC and TEC groups and there was no significant difference in the type of fracture (P > 0.05). CONCLUSION: The results of this study suggest that CEC could not improve the fracture resistance of the endodontically treated premolars. The instrumentation efficacy and the percentage of filling material did not significantly differ between CECs and TECs in premolars.


Root Canal Preparation , Tooth Fractures , Bicuspid , Dental Pulp Cavity , Humans , Molar , Root Canal Obturation , Tooth Fractures/diagnostic imaging
5.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-047951

Background Leading to a sustained epidemic spread with >40,000 confirmed human infections, including >10,000 deaths, COVID-19 was caused by 2019-nCov and resulted in acute respiratory distress syndrome (ARDS) and sepsis, which brought more challenges to the patient’s treatment. The S-glycoprotein, which recognized as the key factor for the entry of 2019-nCov into the cell, contains two functional domains: an ACE2 receptor binding domain and a second domain necessary for fusion of the coronavirus and cell membranes. FURIN activity, exposes the binding and fusion domains, is essential for the zoonotic transmission of 2019-nCov. Moreover, it has been reported that ACE2 is likely to be the receptor for 2019-nCoV. In addition, FURIN enzyme and ACE2 receptor were expressed in airway epithelia, cardiac tissue, and enteric canals, which considered as the potential target organ of the virus. However, report about the expression of FURIN and ACE2 in oral tissues was limited.Methods In order to investigate the potential infective channel of new coronavirus in oral cavity, we analyze the expression of ACE2 and FURIN that mediate the new coronavirus entry into host cells in oral mucosa using the public single-cell sequence datasets. Furthermore, immunohistochemical staining experiment was performed to confirm the expression of ACE2 and FURIN in the protein level.Results The bioinformatics results indicated the differential expression of ACE2 and FURIN on epithelial cells of different oral mucosal tissues and the proportion of FURIN-positive cells was obviously higher than that of ACE2-positive cells. IHC experiments revealed that both the ACE2-positive and FURIN-positive cells in the target tissues were mainly positioned in the epithelial layers, partly expressed in fibroblasts, which further confirm the bioinformatics results.Conclusions Based on these findings, we speculated that 2019-nCov could effectively invade oral mucosal cells though two possible routes: binding to the ACE2 receptor and fusion with cell membrane activated by FURIN protease. Our results indicated that oral mucosa tissues are susceptible to 2019-nCov, which provides valuable information for virus-prevention strategy in clinical care as well as daily life.Competing Interest StatementThe authors have declared no competing interest.View Full Text

6.
Materials (Basel) ; 10(4)2017 Mar 28.
Article En | MEDLINE | ID: mdl-28772717

Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca-P) coating was prepared by arginine-glycine-aspartic acid-cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca-P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca-P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca-P coating and the Ca-P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca-P coating Mg alloys were greatly improved compared with that of the uncoated sample.

7.
Korean J Orthod ; 46(3): 146-54, 2016 May.
Article En | MEDLINE | ID: mdl-27226960

OBJECTIVE: Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of TiO2 on organic compounds, we hoped to synthesize a novel bracket with a TiO2 thin film to develop a photocatalytic antimicrobial effect. METHODS: The sol-gel dip coating method was used to prepare TiO2 thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. RESULTS: Films with 5 coating layers annealed at 700℃ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. TiO2 thin films with 5 coating layers annealed at 700℃ exhibited the greatest antimicrobial activity under UV-A light irradiation. CONCLUSIONS: These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.

...