Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Adv Sci (Weinh) ; 11(1): e2304545, 2024 Jan.
Article En | MEDLINE | ID: mdl-37990786

Histone deacetylase 6 (HDAC6) is one of the key histone deacetylases (HDACs) that regulates various cellular functions including clearance of misfolded protein and immunological responses. Considerable evidence suggests that HDAC6 is closely related to amyloid and tau pathology, the two primary hallmarks of Alzheimer's disease (AD). It is still unclear whether HDAC6 expression changes with amyloid deposition in AD during disease progression or HDAC6 may be regulating amyloid phagocytosis or neuroinflammation or other neuropathological changes in AD. In this work, the pathological accumulation of HDAC6 in AD brains over age as well as the relationship of its regulatory activity - with amyloid pathogenesis and pathophysiological alterations is aimed to be enlightened using the newly developed HDAC6 inhibitor (HDAC6i) PB118 in microglia BV2 cell and 3D-AD human neural culture model. Results suggest that the structure-based rational design led to biologically compelling HDAC6i PB118 with multiple mechanisms that clear Aß deposits by upregulating phagocytosis, improve tubulin/microtubule network by enhancing acetyl α-tubulin levels, regulate different cytokines and chemokines responsible for inflammation, and significantly reduce phospho-tau (p-tau) levels associated with AD. These findings indicate that HDAC6 plays key roles in the pathophysiology of AD and potentially serves as a suitable pharmacological target through chemical biology-based drug discovery in AD.


Alzheimer Disease , Humans , Histone Deacetylase 6 , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Tubulin/metabolism
2.
Cell Rep ; 42(9): 113141, 2023 09 26.
Article En | MEDLINE | ID: mdl-37713312

Emerging evidence suggests that peripheral immune cells contribute to Alzheimer's disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice with mast cell-deficient strains and observed the effects on AD-related neuropathology and cognitive impairment. We found that mast cell depletion improved contextual fear conditioning in 5XFAD mice without affecting cued fear conditioning, anxiety-like behavior, or amyloid burden. Furthermore, mast cell depletion led to an upregulation of transcriptomic signatures for putatively protective disease-associated microglia and resulted in reduced markers indicative of reactive astrocytes. We hypothesize a system of bidirectional communication between dural mast cells and the brain, where mast cells respond to signals from the brain environment by expressing immune-regulatory mediators, impacting cognition and glial cell function. These findings highlight mast cells as potential therapeutic targets for AD.


Alzheimer Disease , Microglia , Mice , Animals , Microglia/pathology , Mast Cells/pathology , Mice, Transgenic , Alzheimer Disease/pathology , Cognition , Immunologic Factors
3.
Nat Neurosci ; 26(9): 1489-1504, 2023 09.
Article En | MEDLINE | ID: mdl-37620442

Brain infiltration of peripheral immune cells and their interactions with brain-resident cells may contribute to Alzheimer's disease (AD) pathology. To examine these interactions, in the present study we developed a three-dimensional human neuroimmune axis model comprising stem cell-derived neurons, astrocytes and microglia, together with peripheral immune cells. We observed an increase in the number of T cells (but not B cells) and monocytes selectively infiltrating into AD relative to control cultures. Infiltration of CD8+ T cells into AD cultures led to increased microglial activation, neuroinflammation and neurodegeneration. Using single-cell RNA-sequencing, we identified that infiltration of T cells into AD cultures led to induction of interferon-γ and neuroinflammatory pathways in glial cells. We found key roles for the C-X-C motif chemokine ligand 10 (CXCL10) and its receptor, CXCR3, in regulating T cell infiltration and neuronal damage in AD cultures. This human neuroimmune axis model is a useful tool to study the effects of peripheral immune cells in brain disease.


Alzheimer Disease , CD8-Positive T-Lymphocytes , Humans , Neuroimmunomodulation , Neuroglia , Neurons
4.
Front Immunol ; 14: 1177672, 2023.
Article En | MEDLINE | ID: mdl-37520559

Background and objectives: Encephalitis is a devastating neurologic disorder with high morbidity and mortality. Autoimmune causes are roughly as common as infectious ones. N-methyl-D-aspartic acid receptor (NMDAR) encephalitis (NMDARE), characterized by serum and/or spinal fluid NMDAR antibodies, is the most common form of autoimmune encephalitis (AE). A translational rodent NMDARE model would allow for pathophysiologic studies of AE, leading to advances in the diagnosis and treatment of this debilitating neuropsychiatric disorder. The main objective of this work was to identify optimal active immunization conditions for NMDARE in mice. Methods: Female C57BL/6J mice aged 8 weeks old were injected subcutaneously with an emulsion of complete Freund's adjuvant, killed and dessicated Mycobacterium tuberculosis, and a 30 amino acid peptide flanking the NMDAR GluN1 subunit N368/G369 residue targeted by NMDARE patients' antibodies. Three different induction methods were examined using subcutaneous injection of the peptide emulsion mixture into mice in 1) the ventral surface, 2) the dorsal surface, or 3) the dorsal surface with reimmunization at 4 and 8 weeks (boosted). Mice were bled biweekly and sacrificed at 2, 4, 6, 8, and 14 weeks. Serum and CSF NMDAR antibody titer, mouse behavior, hippocampal cell surface and postsynaptic NMDAR cluster density, and brain immune cell entry and cytokine content were examined. Results: All immunized mice produced serum and CSF NMDAR antibodies, which peaked at 6 weeks in the serum and at 6 (ventral and dorsal boosted) or 8 weeks (dorsal unboosted) post-immunization in the CSF, and demonstrated decreased hippocampal NMDAR cluster density by 6 weeks post-immunization. In contrast to dorsally-immunized mice, ventrally-induced mice displayed a translationally-relevant phenotype including memory deficits and depressive behavior, changes in cerebral cytokines, and entry of T-cells into the brain at the 4-week timepoint. A similar phenotype of memory dysfunction and anxiety was seen in dorsally-immunized mice only when they were serially boosted, which also resulted in higher antibody titers. Discussion: Our study revealed induction method-dependent differences in active immunization mouse models of NMDARE disease. A novel ventrally-induced NMDARE model demonstrated characteristics of AE earlier compared to dorsally-induced animals and is likely suitable for most short-term studies. However, boosting and improving the durability of the immune response might be preferred in prolonged longitudinal studies.


Autoimmune Diseases of the Nervous System , Encephalitis , Mice , Female , Animals , Emulsions , Mice, Inbred C57BL , Antibodies , Receptors, N-Methyl-D-Aspartate , Vaccination , Disease Models, Animal
5.
Phytomedicine ; 104: 154158, 2022 Sep.
Article En | MEDLINE | ID: mdl-35728383

BACKGROUND: Based on the complex pathology of AD, a single chemical approach may not be sufficient to deal simultaneously with multiple pathways of amyloid-tau neuroinflammation. A polydrug approach which contains multiple bioactive components targeting multiple pathways in AD would be more appropriate. Here we focused on a Chinese medicine (HLXL), which contains 56 bioactive natural products identified in 11 medicinal plants and displays potent anti-inflammatory and immuno-modulatory activity. HYPOTHESIS/PURPOSE: We investigated the neuroimmune and neuroinflammation mechanisms by which HLXL may attenuate AD neuropathology. Specifically, we investigated the effects of HLXL on the neuropathology of AD using both transgenic mouse models as well as microglial cell-based models. STUDY DESIGN: The 5XFAD transgenic animals and microglial cell models were respectively treated with HLXL and Aß42, and/or lipopolysaccharide (LPS), and then analyzed focusing on microglia mediated Aß uptake and clearance, as well as pathway changes. METHODS: We showed that HLXL significantly reduced amyloid neuropathology by upregulation of microglia-mediated phagocytosis of Aß both in vivo and in vitro. HLXL displayed multi-modal mechanisms regulating pathways of phagocytosis and energy metabolism. RESULTS: Our results may not only open a new avenue to support pharmacologic modulation of neuroinflammation and the neuroimmune system for AD intervention, but also identify HLXL as a promising natural medicine for AD. CONCLUSION: It is conceivable that the traditional wisdom of natural medicine in combination with modern science and technology would be the best strategy in developing effective therapeutics for AD.


Alzheimer Disease , Amyloidosis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Microglia , Neuroinflammatory Diseases , Phagocytosis
...