Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.629
1.
J Rural Health ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809261

BACKGROUND: Family caregivers are at higher risk for developing cardiovascular disease (CVD) than non-caregivers. This risk is worse for those who live in rural compared to urban areas. Health activation, an indicator of engagement in self-care, is predictive of health outcomes and CVD risk in several populations. However, it is not known whether health activation is associated with CVD risk in rural caregivers of patients with chronic illnesses nor is it clear whether sex moderates any association. OBJECTIVES: Our aims were to determine (1) whether health activation independently predicts 10-year CVD risk; and (2) whether sex interacts with health activation in the prediction of 10-year CVD risk among rural family caregivers (N = 247) of patients with chronic illnesses. METHODS: Health activation was measured using the Patient Activation Measure. The predicted 10-year risk of CVD was assessed using the Framingham Risk Score. Data were analyzed using nonlinear regression analysis. RESULTS: Higher levels of health activation were significantly associated with decreased risk of developing CVD (p < 0.028). There was no interaction of sex with health activation on future CVD risk. However, male caregivers had greater risk of developing CVD in the next 10 years than female caregivers (p < 0.001). CONCLUSIONS: We demonstrated the importance of health activation to future CVD risk in rural family caregivers of patients with chronic illnesses. We also demonstrated that despite the higher risk of future CVD among male, the degree of association between health activation and CVD risk did not differ by sex.

2.
Elife ; 132024 May 22.
Article En | MEDLINE | ID: mdl-38775133

Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.


Brain , Formaldehyde , Neurons , Paraffin Embedding , Tissue Fixation , Animals , Paraffin Embedding/methods , Mice , Tissue Fixation/methods , Neurons/physiology , Fixatives/chemistry
3.
Front Cardiovasc Med ; 11: 1306055, 2024.
Article En | MEDLINE | ID: mdl-38689859

Introduction: Signal-averaged electrocardiography (SAECG) provides diagnostic and prognostic information regarding cardiac diseases. However, its value in other nonischemic cardiomyopathies (NICMs) remains unclear. This study aimed to investigate the role of SAECG in patients with NICM. Methods and results: This retrospective study included consecutive patients with NICM who underwent SAECG, biventricular substrate mapping, and ablation for ventricular arrhythmia (VA). Patients with baseline ventricular conduction disturbances were excluded. Patients who fulfilled at least one SAECG criterion were categorized into Group 1, and the other patients were categorized into Group 2. Baseline and ventricular substrate characteristics were compared between the two groups. The study included 58 patients (39 men, mean age 50.4 ± 15.5 years), with 34 and 24 patients in Groups 1 and 2, respectively. Epicardial mapping was performed in eight (23.5%) and six patients (25.0%) in Groups 1 and 2 (p = 0.897), respectively. Patients in Group 1 had a more extensive right ventricular (RV) low-voltage zone (LVZ) and scar area than those in Group 2. Group 1 had a larger epicardial LVZ than Group 2. Epicardial late potentials were more frequent in Group 1 than in Group 2. There were more arrhythmogenic foci within the RV outflow tract in Group 1 than in Group 2. There was no significant difference in long-term VA recurrence. Conclusion: In our NICM population, a positive SAECG was associated with a larger RV endocardial scar, epicardial scar/late potentials, and a higher incidence of arrhythmogenic foci in the RV outflow tract.

4.
APL Bioeng ; 8(2): 026107, 2024 Jun.
Article En | MEDLINE | ID: mdl-38694891

Establishing quantitative parameters for differentiating between healthy and diseased cartilage tissues by examining collagen fibril degradation patterns facilitates the understanding of tissue characteristics during disease progression. These findings could also complement existing clinical methods used to diagnose cartilage-related diseases. In this study, cartilage samples from normal, osteoarthritis (OA), and rheumatoid arthritis (RA) tissues were prepared and analyzed using polarization-resolved second harmonic generation (P-SHG) imaging and quantitative image texture analysis. The enhanced molecular contrast obtained from this approach is expected to aid in distinguishing between healthy and diseased cartilage tissues. P-SHG image analysis revealed distinct parameters in the cartilage samples, reflecting variations in collagen fibril arrangement and organization across different pathological states. Normal tissues exhibited distinct χ33/χ31 values compared with those of OA and RA, indicating collagen type transition and cartilage erosion with chondrocyte swelling, respectively. Compared with those of normal tissues, OA samples demonstrated a higher degree of linear polarization, suggesting increased tissue birefringence due to the deposition of type-I collagen in the extracellular matrix. The distribution of the planar orientation of collagen fibrils revealed a more directional orientation in the OA samples, associated with increased type-I collagen, while the RA samples exhibited a heterogeneous molecular orientation. This study revealed that the imaging technique, the quantitative analysis of the images, and the derived parameters presented in this study could be used as a reference for disease diagnostics, providing a clear understanding of collagen fibril degradation in cartilage.

5.
PLoS One ; 19(5): e0302463, 2024.
Article En | MEDLINE | ID: mdl-38753699

OBJECTIVES: Soccer heading is adversely associated with neurocognitive performance, but whether greater neck strength or anthropometrics mitigates these outcomes is controversial. Here, we examine the effect of neck strength or anthropometrics on associations of soccer heading with neurocognitive outcomes in a large cohort of adult amateur players. METHODS: 380 adult amateur league soccer players underwent standardized measurement of neck strength (forward flexion, extension, left lateral flexion, right lateral flexion) and head/neck anthropometric measures (head circumference, neck length, neck circumference and neck volume). Participants were assessed for heading (HeadCount) and cognitive performance (Cogstate) on up to 7 visits over a period of two years. Principal components analysis (PCA) was performed on 8 neck strength and anthropometric measures. We used generalized estimating equations to test the moderation effect of each of the three PCs on 8 previously identified adverse associations of 2-week and 12-month heading estimates with cognitive performance (psychomotor speed, immediate verbal recall, verbal episodic memory, attention, working memory) and of unintentional head impacts on moderate to severe central nervous system symptoms. RESULTS: 3 principal components (PC's) account for 80% of the variance in the PCA. In men, PC1 represents head/neck anthropometric measures, PC2 represents neck strength measures, and PC3 represents the flexor/extensor (F/E) ratio. In women, PC1 represents neck strength, PC2 represents anthropometrics, and PC3 represents the F/E ratio. Of the 48 moderation effects tested, only one showed statistical significance after Bonferroni correction, which was not robust to extensive sensitivity analyses. CONCLUSION: Neither neck strength nor anthropometrics mitigate adverse associations of soccer heading with cognitive performance in adult amateur players.


Cognition , Muscle Strength , Neck , Soccer , Humans , Male , Adult , Cognition/physiology , Female , Muscle Strength/physiology , Neck/physiology , Young Adult , Principal Component Analysis , Neck Muscles/physiology , Athletes
6.
Cancers (Basel) ; 16(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791869

This study uses Monte Carlo simulation and experimental measurements to develop a predictive model for estimating the external dose rate associated with permanent radioactive source implantation in prostate cancer patients. The objective is to estimate the accuracy of the patient's external dose rate measurement. First, I-125 radioactive sources were implanted into Mylar window water phantoms to simulate the permanent implantation of these sources in patients. Water phantom experimental measurement was combined with Monte Carlo simulation to develop predictive equations, whose performance was verified against external clinical data. The model's accuracy in predicting the external dose rate in patients with permanently implanted I-125 radioactive sources was high (R2 = 0.999). A comparative analysis of the experimental measurements and the Monte Carlo simulations revealed that the maximum discrepancy between the measured and calculated values for the water phantom was less than 5.00%. The model is practical for radiation safety assessments, enabling the evaluation of radiation exposure risks to individuals around patients with permanently implanted I-125 radioactive sources.

7.
Orphanet J Rare Dis ; 19(1): 217, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790028

BACKGROUND: To investigate the peripheral nervous system involvement in S sialidosis with typical features of myoclonus, seizure, and giant waves in somatosensory evoked potentials suggesting hyperexcitability in the central nervous system. METHODS: The clinical presentation of patients with genetically confirmed sialidosis was recorded. Neurophysiological studies, including nerve conduction studies (NCSs), F-wave studies, and needle electromyography (EMG), were performed on these patients. RESULTS: Six patients (M/F: 2:4) were recruited. In addition to the classical presentation, intermittent painful paresthesia was noted in four patients, and three of whom reported it as the earliest symptom. In the NCSs, one patient had reduced compound muscle action potential amplitudes in the right ulnar nerve, while another patient had prolonged distal motor latency in the bilateral tibial and peroneal nerves. Prolonged F-wave latency (83.3%), repeater F-waves (50%), and neurogenic polyphasic waves in EMG (in 2 out of 3 examined patients) were also noted. Interestingly, a very late response was noted in the F-wave study of all patients, probably indicating lesions involving the proximal peripheral nerve or spinal cord. CONCLUSION: In addition to the central nervous system, the peripheral nervous system is also involved in sialidosis, with corresponding clinical symptoms. Further study on these phenomena is indicated.


Electromyography , Mucolipidoses , Humans , Male , Female , Adult , Mucolipidoses/physiopathology , Neural Conduction/physiology , Young Adult , Peripheral Nerves/physiopathology , Peripheral Nerves/pathology , Adolescent , Peripheral Nervous System/physiopathology , Evoked Potentials, Somatosensory/physiology , Middle Aged , Child
8.
Pneumonia (Nathan) ; 16(1): 10, 2024 May 25.
Article En | MEDLINE | ID: mdl-38790032

RATIONALE: The prevalence, clinical characteristics, and outcomes of invasive pulmonary aspergillosis in patients with severe community-acquired pneumonia (CAP) in intensive care units remain underestimated because of the lack of a disease-recognition scheme and the inadequacy of diagnostic tests. OBJECTIVES: To identify the prevalence, risk factors, and outcomes of severe CAP complicated with invasive pulmonary aspergillosis (IPA) in intensive care units (ICUs). METHODS: We conducted a retrospective cohort study including recruited 311 ICU-hospitalized patients with severe CAP without influenza or with influenza. Bronchoalveolar lavage fluid (BALF) samples were from all patients and subjected to mycological testing. Patients were categorized as having proven or probable Aspergillus infection using a modified form of the AspICU algorithm comprising clinical, radiological, and mycological criteria. MEASUREMENTS AND MAIN RESULTS: Of the 252 patients with severe CAP and 59 influenza patients evaluated, 24 met the diagnostic criteria for proven or probable Aspergillus infection in the CAP group and 9 patients in the influenza group, giving estimated prevalence values of 9.5% and 15.3%, respectively. COPD and the use of inhaled corticosteroids were independent risk factors for IPA. IPA in patients with severe CAP was significantly associated with the duration of mechanical support, the length of ICU stay, and the 28-day mortality. CONCLUSIONS: An aggressive diagnostic approach for IPA patients with severe CAP and not only influenza or COVID-19 should be pursued. Further randomized controlled trials need to evaluate the timing, safety, and efficacy of antifungal therapy in reducing IPA incidence and improving clinical outcomes.

9.
Int J Mol Sci ; 25(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38791313

A low-energy hit, such as a slight fall from a bed, results in a bone fracture, especially in the hip, which is a life-threatening risk for the older adult and a heavy burden for the social economy. Patients with low-energy traumatic bone fractures usually suffer a higher level of bony catabolism accompanied by osteoporosis. Bone marrow-derived stem cells (BMSCs) are critical in osteogenesis, leading to metabolic homeostasis in the healthy bony microenvironment. However, whether the BMSCs derived from the patients who suffered osteoporosis and low-energy traumatic hip fractures preserve a sustained mesodermal differentiation capability, especially in osteogenesis, is yet to be explored in a clinical setting. Therefore, we aimed to collect BMSCs from clinical hip fracture patients with osteoporosis, followed by osteogenic differentiation comparison with BMSCs from healthy young donors. The CD markers identification, cytokines examination, and adipogenic differentiation were also evaluated. The data reveal that BMSCs collected from elderly osteoporotic patients secreted approximately 122.8 pg/mL interleukin 6 (IL-6) and 180.6 pg/mL vascular endothelial growth factor (VEGF), but no PDGF-BB, IL-1b, TGF-b1, IGF-1, or TNF-α secretion. The CD markers and osteogenic and adipogenic differentiation capability in BMSCs from these elderly osteoporotic patients and healthy young donors are equivalent and compliant with the standards defined by the International Society of Cell Therapy (ISCT). Collectively, our data suggest that the elderly osteoporotic patients-derived BMSCs hold equivalent differentiation and proliferation capability and intact surface markers identical to BMSCs collected from healthy youth and are available for clinical cell therapy.


Cell Differentiation , Hip Fractures , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteoporosis/metabolism , Osteoporosis/pathology , Female , Aged , Hip Fractures/metabolism , Hip Fractures/pathology , Male , Aging , Cells, Cultured , Adult , Cytokines/metabolism , Middle Aged , Adipogenesis , Aged, 80 and over , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology
10.
Science ; : eadm8386, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753766

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.

11.
Cancers (Basel) ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38730603

The HER2-positive subtype accounts for approximately one-fifth of all breast cancers. Insensitivity and development of acquired resistance to targeted therapies in some patients contribute to their poor prognosis. HER2 overexpression is associated with metabolic reprogramming, facilitating cancer cell growth and survival. Novel liver X receptor (LXR) ligand GAC0001E5 (1E5) has been shown to inhibit cancer cell proliferation by disrupting glutaminolysis and inducing oxidative stress. In this study, HER2-positive breast cancer cells were treated with 1E5 to determine their potential inhibitory effects and mechanisms of action in HER2-positive breast cancers. Similar to previous observations in other cancer types, 1E5 treatments inhibited LXR activity, expression, and cancer cell proliferation. Expression of fatty acid synthesis genes, including fatty acid synthase (FASN), was downregulated following 1E5 treatment, and results from co-treatment experiments with an FASN inhibitor suggest that the same pathway is targeted by 1E5. Treatments with 1E5 disrupted glutaminolysis and resulted in increased oxidative stress. Strikingly, HER2 transcript and protein levels were both significantly downregulated by 1E5. Taken together, these findings indicate the therapeutic potential of targeting HER2 overexpression and associated metabolic reprogramming via the modulation of LXR in HER2-positive breast cancers.

12.
Aging (Albany NY) ; 162024 May 16.
Article En | MEDLINE | ID: mdl-38761181

BACKGROUND: Valvular heart disease (VHD) is becoming increasingly important to manage the risk of future complications. Electrocardiographic (ECG) changes may be related to multiple VHDs, and (AI)-enabled ECG has been able to detect some VHDs. We aimed to develop five deep learning models (DLMs) to identify aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation. METHODS: Between 2010 and 2021, 77,047 patients with echocardiography and 12-lead ECG performed within 7 days were identified from an academic medical center to provide DLM development (122,728 ECGs), and internal validation (7,637 ECGs). Additional 11,800 patients from a community hospital were identified to external validation. The ECGs were classified as with or without moderate-to-severe VHDs according to transthoracic echocardiography (TTE) records, and we also collected the other echocardiographic data and follow-up TTE records to identify new-onset valvular heart diseases. RESULTS: AI-ECG adjusted for age and sex achieved areas under the curves (AUCs) of >0.84, >0.80, >0.77, >0.83, and >0.81 for detecting aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation, respectively. Since predictions of each DLM shared similar components of ECG rhythms, the positive findings of each DLM were highly correlated with other valvular heart diseases. Of note, a total of 37.5-51.7% of false-positive predictions had at least one significant echocardiographic finding, which may lead to a significantly higher risk of future moderate-to-severe VHDs in patients with initially minimal-to-mild VHDs. CONCLUSION: AI-ECG may be used as a large-scale screening tool for detecting VHDs and a basis to undergo an echocardiography.

13.
PLoS One ; 19(4): e0301052, 2024.
Article En | MEDLINE | ID: mdl-38630669

Stress is a prevalent bodily response universally experienced and significantly affects a person's mental and cognitive state. The P300 response is a commonly observed brain behaviour that provides insight into a person's cognitive state. Previous works have documented the effects of stress on the P300 behaviour; however, only a few have explored the performance in a mobile and naturalistic experimental setup. Our study examined the effects of stress on the human brain's P300 behaviour through a height exposure experiment that incorporates complex visual, vestibular, and proprioceptive stimuli. A more complex sensory environment could produce translatable findings toward real-world behaviour and benefit emerging technologies such as brain-computer interfaces. Seventeen participants experienced our experiment that elicited the stress response through physical and virtual height exposure. We found two unique groups within our participants that exhibited contrasting behavioural performance and P300 target reaction response when exposed to stressors (from walking at heights). One group performed worse when exposed to heights and exhibited a significant decrease in parietal P300 peak amplitude and increased beta and gamma power. On the other hand, the group less affected by stress exhibited a change in their N170 peak amplitude and alpha/mu rhythm desynchronisation. The findings of our study suggest that a more individualised approach to assessing a person's behaviour performance under stress can aid in understanding P300 performance when experiencing stress.


Brain , Event-Related Potentials, P300 , Humans , Event-Related Potentials, P300/physiology , Brain/physiology , Computer Simulation , Alpha Rhythm , Head , Electroencephalography
14.
Biology (Basel) ; 13(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38666843

Formoterol, a ß2-adrenergic receptor (ß2AR) agonist, shows promise in various diseases, but its effectiveness in Parkinson's disease (PD) is debated, with unclear regulation of mitochondrial homeostasis. This study employed a cell model featuring mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) variants associated with familial parkinsonism, demonstrating mitochondrial dysfunction and dynamic imbalance, exploring the therapeutic effects and underlying mechanisms of formoterol. Results revealed that 24-h formoterol treatment enhanced cell proliferation, viability, and neuroprotection against oxidative stress. Mitochondrial function, encompassing DNA copy number, repatriation, and complex III-linked respiration, was comprehensively restored, along with the dynamic rebalance of fusion/fission events. Formoterol reduced extensive hypertubulation, in contrast to mitophagy, by significantly upregulating protein Drp-1, in contrast to fusion protein Mfn2, mitophagy-related protein Parkin. The upstream mechanism involved the restoration of ERK signaling and the inhibition of Akt overactivity, contingent on the activation of ß2-adrenergic receptors. Formoterol additionally aided in segregating healthy mitochondria for distribution and transport, therefore normalizing mitochondrial arrangement in mutant cells. This study provides preliminary evidence that formoterol offers neuroprotection, acting as a mitochondrial dynamic balance regulator, making it a promising therapeutic candidate for PD.

15.
Nat Med ; 30(5): 1461-1470, 2024 May.
Article En | MEDLINE | ID: mdl-38684860

The early identification of vulnerable patients has the potential to improve outcomes but poses a substantial challenge in clinical practice. This study evaluated the ability of an artificial intelligence (AI)-enabled electrocardiogram (ECG) to identify hospitalized patients with a high risk of mortality in a multisite randomized controlled trial involving 39 physicians and 15,965 patients. The AI-ECG alert intervention included an AI report and warning messages delivered to the physicians, flagging patients predicted to be at high risk of mortality. The trial met its primary outcome, finding that implementation of the AI-ECG alert was associated with a significant reduction in all-cause mortality within 90 days: 3.6% patients in the intervention group died within 90 days, compared to 4.3% in the control group (4.3%) (hazard ratio (HR) = 0.83, 95% confidence interval (CI) = 0.70-0.99). A prespecified analysis showed that reduction in all-cause mortality associated with the AI-ECG alert was observed primarily in patients with high-risk ECGs (HR = 0.69, 95% CI = 0.53-0.90). In analyses of secondary outcomes, patients in the intervention group with high-risk ECGs received increased levels of intensive care compared to the control group; for the high-risk ECG group of patients, implementation of the AI-ECG alert was associated with a significant reduction in the risk of cardiac death (0.2% in the intervention arm versus 2.4% in the control arm, HR = 0.07, 95% CI = 0.01-0.56). While the precise means by which implementation of the AI-ECG alert led to decreased mortality are to be fully elucidated, these results indicate that such implementation assists in the detection of high-risk patients, prompting timely clinical care and reducing mortality. ClinicalTrials.gov registration: NCT05118035 .


Artificial Intelligence , Electrocardiography , Humans , Male , Female , Aged , Middle Aged
16.
IEEE Open J Eng Med Biol ; 5: 180-190, 2024.
Article En | MEDLINE | ID: mdl-38606398

A significant issue for traffic safety has been drowsy driving for decades. A number of studies have investigated the effects of acute fatigue on spectral power; and recent research has revealed that drowsy driving is associated with a variety of brain connections in a specific cortico-cortical pathway. In spite of this, it is still unclear how different brain regions are connected in drowsy driving at different levels of daily fatigue. This study identified the brain connectivity-behavior relationship among three different daily fatigue levels (low-, median- and high-fatigue) with the EEG data transfer entropy. According to the results, only low- and medium-fatigue groups demonstrated an inverted U-shaped change in connectivity from high performance to poor behavioral performance. In addition, from low- to high-fatigue groups, connectivity magnitude decreased in the frontal region and increased in the occipital region. These study results suggest that brain connectivity and driving behavior would be affected by different levels of daily fatigue.

17.
J Cardiovasc Nurs ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38687114

BACKGROUND: Health-related quality of life (HRQoL) is poor in patients with heart failure. Psychological (ie, depressive symptoms [DS], anxiety, and perceived control) and physical (ie, functional status) factors are associated with HRQoL. The dynamic relationships among these variables and their impact on HRQoL remain unclear, limiting the ability to design effective interventions. PURPOSE: Our aim was to evaluate a moderated mediation model, in which the association between perceived control and HRQoL was hypothesized to be mediated by DS and anxiety in the presence of a moderator, functional status. METHODS: Patients (N = 426) with heart failure completed the Control Attitudes Scale-Revised to measure perceived control, Duke Activity Status Index for functional status, Patient Health Questionnaire-9 for DS, Brief Symptom Inventory for anxiety, and Minnesota Living with Heart Failure Questionnaire for HRQoL. We performed a moderated parallel mediation analysis. RESULTS: Higher levels of perceived control were associated with better HRQoL through lower levels of anxiety and DS in the presence of functional status (index of moderated mediation for DS, b = 0.029; 95% confidence interval, 0.016-0.045; for anxiety: b = 0.009, 95% confidence interval, 0.002-0.018). The effect of perceived control on psychological symptoms was stronger at low and moderate functional statuses; however, this effect diminished with increasing functional status. CONCLUSION: Functional status moderated the indirect effects of perceived control on HRQoL through DS and anxiety in patients with heart failure. Efforts to improve HRQoL by targeting perceived control may be more effective when considering DS and anxiety in patients with low to moderate levels of functional status.

18.
Nat Commun ; 15(1): 2965, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580652

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information. VG3s receive inputs from all nearby bipolar cell types but exhibit a strong preference for the fast type 3a bipolar cells. By comparing input distributions to VG3 dendrite responses, we show that VG3 dendrites have a short functional length constant that likely depends on inhibitory shunting. This model predicts that RGCs that extend dendrites into the middle layers of the inner plexiform encounter VG3 dendrites whose responses vary according to the local bipolar cell response type.


Amacrine Cells , Retina , Mice , Animals , Amacrine Cells/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Synapses/metabolism , Microscopy, Electron , Dendrites/physiology
19.
ACS Appl Bio Mater ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581392

Carbon dots (CDs) have recently emerged in biomedical and agricultural domains, mainly for their probe applications in developing efficient sensors. However, the existing high-temperature approaches limit the industrial level scaling up to further translate them into different products by mass-scale fabrication of CDs. To address this, we have attempted to lower the synthesis temperature to 140 °C and synthesized different CDs using different organic acids and their combinations in a one-step approach (quantum yield 3.6% to 16.5%; average size 3 to 5 nm). Further, sensing applications of CDs have been explored in three different biological models, mainly Danio rerio (zebrafish) embryos, bacterial strains, and the Lactuca sativa (lettuce) plant. The 72 h exposure of D. rerio embryos to 0.5 and 1 mg/mL concentrations of CDs exhibited significant uptake without mortality, a 100% hatching rate, and nonsignificant alterations in heart rate. Bacterial bioimaging experiments revealed CD compatibility with Gram-positive (Bacillus subtilis) and Gram-negative (Serratia marcescens) strains without bactericidal effects. Furthermore, CDs demonstrated effective conduction and fluorescence within the vascular system of lettuce plants, indicating their potential as in vivo probes for plant tissues. The single-step low-temperature CD synthesis approach with efficient structural and optical properties enables the process as industrially viable to up-scale the technology readiness level. The bioimaging of CDs in different biological models indicates the possibility of developing a CD probe for diverse biosensing roles in diseases, metabolism, microbial contamination sensing, and more.

20.
Article En | MEDLINE | ID: mdl-38650104

OBJECTIVE: IRF2BPL mutation has been associated with a rare neurodevelopmental disorder with abnormal movements, including dystonia. However, the role of IRF2BPL in dystonia remains elusive. We aimed to investigate IRF2BPL mutations in a Taiwanese dystonia cohort. METHODS: A total of 300 unrelated patients with molecularly unassigned isolated (n = 256) or combined dystonia (n = 44) were enrolled between January 2015 and July 2023. The IRF2BPL variants were analyzed based on whole exome sequencing. The in silico prediction of the identified potential pathogenic variant was performed to predict its pathogenicity. We also compared the clinical and genetic features to previous literature reports. RESULTS: We identified one adolescent patient carrying a de novo heterozygous pathogenic variant of IRF2BPL, c.379C>T (p.Gln127Ter), who presented with generalized dystonia, developmental regression, and epilepsy (0.33% of our dystonia cohort). This variant resides within the polyglutamine (poly Q) domain before the first PEST sequence block of the IRF2BPL protein, remarkably truncating the protein structure. Combined with other patients with IRF2BPL mutations in the literature (n = 60), patients with variants in the poly Q domain have a higher rate of nonsense mutations (p < 0.001) and epilepsy (p = 0.008) than patients with variants in other domains. Furthermore, as our index patient, carriers with substitutions before the first PEST sequence block have significantly older age of onset (p < 0.01) and higher non-epilepsy symptoms, including generalized dystonia (p = 0.003), and ataxia (p = 0.003). INTERPRETATION: IRF2BPL mutation is a rare cause of dystonia in our population. Mutations in different domains of IRF2BPL exhibit different phenotypes.

...