Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Neurosci Bull ; 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321347

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.

2.
Neurobiol Dis ; 186: 106273, 2023 10 01.
Article En | MEDLINE | ID: mdl-37648036

Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.


Microglia , TRPM Cation Channels , Humans , AMP-Activated Protein Kinases , Neuroinflammatory Diseases , TRPM Cation Channels/genetics , TOR Serine-Threonine Kinases , Autophagy , Calcium Channels
3.
CNS Neurosci Ther ; 29(10): 2884-2900, 2023 10.
Article En | MEDLINE | ID: mdl-37072932

BACKGROUND: A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS: Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS: We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS: Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.


Epilepsy, Temporal Lobe , Humans , Rats , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/pathology , Microglia/pathology , Rats, Sprague-Dawley , Hippocampus/pathology , Seizures/pathology , CA1 Region, Hippocampal , Synapses/pathology , Kainic Acid/toxicity , Disease Models, Animal
4.
BMC Neurol ; 22(1): 418, 2022 Nov 09.
Article En | MEDLINE | ID: mdl-36352355

BACKGROUND: To explore the clinical characteristics and related factors of children with acute disseminated encephalomyelitis (ADEM) with positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody. METHODS: A retrospective study was conducted and enrolled pediatric ADEM patients who underwent serum MOG antibody detection from May 2017 to August 2020. The patients were divided into two groups: MOG- immunoglobulin G (IgG) positive (n = 35) and MOG-IgG negative (n = 50). We analyzed the clinical characteristics of MOG-IgG-positive ADEM pediatric patients and conducted a comparative analysis between the two groups. RESULTS: Thirty-five patients (21 males and 14 females) in the MOG-IgG-positive group with encephalopathy, multifocal neurological symptoms, and typical magnetic resonance imaging (MRI) abnormalities were enrolled. They usually had a favorable outcome, while some suffered from relapse. Compared to the MOG-IgG-negative group, MOG-IgG-positive ADEM patients had a longer disease duration (median: 10 vs. 6 days), more meningeal involvement (31.4% vs. 8%) and frontal lobe involvement (82.8% vs. 68%), higher relapse rates (14.3% vs. 2%), lower serum tumor necrosis factor (1-12.4 pg/ml, median 1.7 vs. 1-34 pg/ml, median 2.2) and interferon-gamma (1-9.4 pg/ml, median 1.3 vs. 1-64 pg/ml, median 3) (P < 0.05, respectively). Multivariate logistic regression analysis showed that the longer disease duration, meningeal involvement and frontal lobe involvement were the correlated factors of patients with ADEM with MOG antibody (P < 0.05). CONCLUSIONS: Our findings provide clinical evidence that MOG-IgG positivity is associated with longer disease duration, meningeal involvement, and frontal lobe involvement.


Autoantibodies , Encephalomyelitis, Acute Disseminated , Male , Female , Humans , Myelin-Oligodendrocyte Glycoprotein , Retrospective Studies , Immunoglobulin G , Recurrence
5.
J Neuroinflammation ; 19(1): 226, 2022 Sep 14.
Article En | MEDLINE | ID: mdl-36104755

Evidence from experimental and clinical studies implicates immuno-inflammatory responses as playing an important role in epilepsy-induced brain injury. Captopril, an angiotensin-converting enzyme inhibitor (ACEi), has previously been shown to suppress immuno-inflammatory responses in a variety of neurological diseases. However, the therapeutic potential of captopril on epilepsy remains unclear. In the present study, Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to establish a status epilepticus. Captopril (50 mg/kg, i.p.) was administered daily following the KA administration from day 3 to 49. We found that captopril efficiently suppressed the KA-induced epilepsy, as measured by electroencephalography. Moreover, captopril ameliorated the epilepsy-induced cognitive deficits, with improved performance in the Morris water maze, Y-maze and novel objective test. RNA sequencing (RNA-seq) analysis indicated that captopril reversed a wide range of epilepsy-related biological processes, particularly the glial activation, complement system-mediated phagocytosis and the production of inflammatory factors. Interestingly, captopril suppressed the epilepsy-induced activation and abnormal contact between astrocytes and microglia. Immunohistochemical experiments demonstrated that captopril attenuated microglia-dependent synaptic remodeling presumably through C3-C3ar-mediated phagocytosis in the hippocampus. Finally, the above effects of captopril were partially blocked by an intranasal application of recombinant C3a (1.3 µg/kg/day). Our findings demonstrated that captopril reduced the occurrence of epilepsy and cognitive impairment by attenuation of inflammation and C3-mediated synaptic phagocytosis. This approach can easily be adapted to long-term efficacy and safety in clinical practice.


Cognitive Dysfunction , Epilepsy , Animals , Captopril/pharmacology , Captopril/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Epilepsy/chemically induced , Epilepsy/drug therapy , Inflammation/drug therapy , Kainic Acid/toxicity , Phagocytosis , Rats , Rats, Sprague-Dawley
6.
Int Immunopharmacol ; 99: 107974, 2021 Oct.
Article En | MEDLINE | ID: mdl-34358862

Gestational diabetes mellitus (GDM) is a common complication of pregnancy characterized by intrauterine hyperglycemia, which is often associated with a high risk of obesity and diabetes in the offspring. In this study, we established a GDM mouse model by intraperitoneal injection of streptozotocin to investigate the immuno-inflammatory responses in the liver of adult offspring. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were employed to evaluate the glucose tolerance status. Hematoxylin-eosin staining was used to examine the histological changes in the liver. Quantitative real-timePCR (qRT-PCR) was applied to examine the mRNA expression of immune factors. Western blot and immunofluorescence analyses were used to examine the expression of target protein. Additionally, cell experiments were performed to validate the in vivo results. Compared to the control group, the area of fat vacuoles and the number of lymphocyte cells were significantly higher in the 20 weeks-old offspring of GDM mice. The elevated mRNA level of the pro-inflammatory cytokines IL-1ß, IL-6, IL-33 and immune receptors CD3 and CD36 were found in the liver of F1-GDM. The protein level of IL-6r and the phosphorylation of JAK2 and STAT3 were significantly up-regulated. Moreover, the mRNA level of IL-6, IL-1ß and IL-33 and the phosphorylation of JAK2 and STAT3 were also up-regulated in the hepatocyte treated with high concentration of glucose. Our results suggest that intrauterine hyperglycemia is associated with increased inflammation in the liver of adult male offspring.


Diabetes, Gestational/pathology , Hepatitis/pathology , Hyperglycemia/pathology , Liver/pathology , Animals , Cytokines/analysis , Cytokines/biosynthesis , Diabetes Mellitus, Experimental/pathology , Female , Glucose Intolerance/complications , Hepatitis/congenital , Hepatocytes/drug effects , Hepatocytes/metabolism , Insulin Resistance , Interleukins/biosynthesis , Interleukins/blood , Janus Kinase 2/biosynthesis , Janus Kinase 2/drug effects , Janus Kinase 2/genetics , Lymphocyte Count , Male , Mice , Mice, Inbred ICR , Pregnancy , Primary Cell Culture , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , STAT3 Transcription Factor/biosynthesis , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/genetics , Vacuoles/pathology
...